
Homework 5
CS161 Computer Security, Spring 2008

Assigned 4/23/08
Due 5/05/08

1. Worm Propagation

In lecture, we talked about ways of increasing the propagation rate of
worms. In this problem, we’ll examine the effects of decreasing the prop-
agation rate of worms.

Recall that i(t) is the proportion of machines in a network that are
infected by a worm at time t, β is the contact rate, and T is a constant
of integration that fixes the time position of the incident. We’ll use a
Random Spread (a.k.a Susceptible-Infected) model for worm propagation
and assume a network of tens of millions of susceptible machines.

Please limit each answer to 1-3 sentences. You may also include graphs
or tables if you like, though they are not necessary.

(a) (4 points) If β is 3.5 and T is 15, at what time are 50 percent of
the machines infected? At what time will 99% of all machines be
infected? Hint: An easy way to work through this problem is to
use Mathematica, Excel, or OpenOffice to generate or graph your
results.

2 points: The 50 percent time is roughly 15.

2 points: The 99 percent time is roughly 17.

(b) (4 points) If we are able to reduce the initial infection rate to 0.5,
what is the 50 percent infection time? What is the time for 99% of
all machines to be infected?

2 points: The 50 percent time is the same as in part a.

2 points: The 99 percent time is roughly 25.

(c) (4 points) Sometimes a worm is initially distributed to a hitlist, a
set of hosts known to be vulnerable. Once the hosts on the hitlist are
infected, these hosts scan randomly to continue spreading. Consider
a hitlist that makes up one percent of all vulnerable hosts. Modify
the formula for i(t) to take into account the speedup gained by the
hitlist.

i(t+x) where x satisfies i(x) = 1 percent.

2. Honeypots and Tarpits

A tarpit is a honeypot that consumes as many of the adversary’s re-
sources as possible. For each of the following honeypots, describe a way
we could turn the honeypot into a tarpit. Do not use the same answer
for more than one part of this problem. Keep your answers short, no
more than two or three sentences.

(a) (3 points) An FTP server with no password. Located on the FTP
server is a file with a tempting name, such as corporate secrets.txt

Returning a file of unlimited length, containing random numbers,
OR putting false and misleading corporate secrets into the file, so
that the attacker acts on the false information, wasting his time.

(b) (3 points) A host with many open ports.

Any method in which opening a port takes a very long time.

(c) (3 points) An open directory on a web server. The directory has a
tempting name, such as /highly proprietary software/source code.

Listing an unlimited list of files, all of which contain nothing useful.
OR, place code that appears to truly be highly proprietary source
code, but in reality is something crafted to mislead and confuse the
attacker, such as some open source software.

(d) (3 points) A compromised SSH server containing industrial control
software to accompany already-stolen steel mill blueprints.

A variety of answers were accepted. The best involved inserting a
bug into the software such that if the attacker builds a steel mill
using the blueprints, and runs it using this software, the steel mill
will explode after being in operation a short while.

3. Taint Analysis

In this question, you are to perform a taint analysis on the following
code.

float area_circle(float radius)

{

float pi=3.14;

return pi*radius*radius;

}

float area_square(float width)

{

return width*width;

}

int main(char** argv, int argc)

{

float radius_1 = 7.2;

float area_1 = area_circle(radius_1);

float radius_2 = read_float_from_keyboard(); //radius_2 is tainted

float area_2 = area_circle(radius_2); //area_2 is tainted.

float summed_area = 0;

summed_area += area_1;

summed_area += area_2; //summed_area is tainted (1 point)

int n = read_int_from_keyboard(); //n is tainted

int fibonacci = 1;

int i;

for(i = n; i != 0; i--) //i is tainted

{

fibonacci *= i; //fibonacci is tainted

}

float (*pt2Area)(float);

printf("Enter ’c’ for circles, enter ’s’ for squares: ");

char which_area = read_char_from_keyboard(); //which_area is tainted (2 points)

if (which_area == ’c’)

pt2Area = area_circle;

if (which_area == ’s’)

pt2Area = area_square;

char buf[42];

printf("Enter a size: \n");

gets(buf); //everything on the stack is tainted. (2 points).

float size = string_to_float(buf); //size is tainted

float area_3 = pt2Area(size); //area_3 is tainted (1 point)

printf("Area is: %f \n", area_3);

printf("The ratio of area 3 to area 2 is: %f \n", area_3/area_2);

return 0;

Part b:

buffer overflow, 2 points

whicharea not c or s, leading to a bad function pointer, 2 points

area2 taking a value of zero, leading to a divide by zero, 2 points

4. Symbolic Execution

Consider the following code.

void f(void)

{

int step = 0; int user_increment = 0;

int start = 1;

printf("Would you like to count by 1? (y/n)\n");

char choice = read_char_from_keyboard();

printf("Start counting at: \n");

start = read_char_from_keyboard();

if (choice == ’n’)

{

user_increment = read_int_from_keyboard();

if (user_increment > (100 - start))

printf("WARNING: You may not experience many iterations.\n");

}

if (choice == ’y’)

{

step = 1;

if (user_increment > 100)

printf("WARNING: You will not experience many iterations.\n");

}

step += user_increment;

/* Place assertion here */

assert(step != 0)

printf("Counting to 100, incrementing by %d. \n", step);

for(int i = start; i <= 100; i+=step)

printf("Currently we are at %d. \n", i);

(a) (1 point) Write the assertion that must be true for correct execution.

1 point: Anything that ensures that step != 0.

(b) (11 points) Identify each path this code might take (up to the asser-
tion). For each path, give the path predicate. Determine whether
or not each path is feasible. For each feasible path, give an example
of input that would cause this path to be executed. For each feasi-
ble path, write a symbolic expression that must be satisfied in order
for the assertion to fail. Determine whether each symbolic expres-
sion is satisfiable. For each satisfiable expression, give an example
of input that causes the assertion to fail.

We were looking for 9 paths, with the conditionals taking the fol-
lowing branches (- means not reached):

i. TTTT

ii. TTTF

iii. TTF-

iv. TFTT

v. TFTF

vi. TFF-

vii. F-TT

viii. F-TF

ix. F-F-

Here are the corresponding path predicates:

i. choice = n and choice = y and ... (infeasible)

ii. choice = n and choice = y and ... (infeasible)

iii. choice = n and user increment > (100 - start) ; fail if user
increment = 0

iv. choice = n and choice = y and ... (infeasible)

v. choice = n and choice = y and ... (infeasible)

vi. choice = n and user increment <= (100 - start) ; fail if user
increment = 0

vii. choice = y and user increment > 100 ; cannot fail

viii. choice = y and user increment <= 100 ; fail if user increment
= -1;

ix. choice != y and choice != n

