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Review

* Worms
— Self-propagating
—How does worm propagate?
—Worm modeling & measurement
* Today: defenses

Identifying Worm Patterns

* Monitor network and look for strings
common to traffic with worm-like behavior
— EarlyBird

— Signatures can then be used for content filtering
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Content sifting

* Assume there exists some (relatively) unique invariant
bitstring W across all instances of a particular worm
(true today, not tomorrow...)

* Two consequences

— Content Prevalence: W will be more common in traffic than other
bitstrings of the same length

— Address Dispersion: the set of packets containing W will address
a disproportionate number of distinct sources and destinations

« Content sifting: find W’s with high content prevalence
and high address dispersion and drop that traffic
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Observation:
High-prevalence strings are rare
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The basic algorithm
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Challenges

« Computation
— To support a 1Gbps line rate we have 12us to process
each packet, at 10Gbps 1.2us, at 40Gbps...
» Dominated by memory references; state expensive
— Content sifting requires looking at every byte in a
packet
State
— On a fully-loaded 1Gbps link a naive implementation can
easily consume 100MB/sec for table
— Computation/memory duality: on high-speed (ASIC)

implementation, latency requirements may limit state to
on-chip SRAM

(Stefan Savage, UCSD *)

Which substrings to index?

« Approach 1: Index all substrings

— Way too many substrings = too much computation - too
much state

« Approach 2: Index whole packet
— Very fast but trivially evadable (e.g., Witty, Email Viruses)

« Approach 3: Index all contiguous substrings of a fixed length ‘S’
— Can capture all signatures of length ‘S’ and larger
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How to represent substrings?

« Store hash instead of literal to reduce state
« Incremental hash to reduce computation

< Rabin fingerprint is one such efficient incremental
hash function [Rabin81,Manber94]

— One multiplication, addition and mask per byte
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How to subsample?

» Approach 1: sample packets
—If we chose 1 in N, detection will be slowed by N
* Approach 2: sample at particular byte offsets
— Susceptible to simple evasion attacks

—No guarantee that we will sample same sub-string in
every packet

» Approach 3: sample based on the hash of the
substring

(Stefan Savage, UCSD *)

Solution

* Index fixed-length substrings using incremental
hashes

* Subsample hashes as function of hash value
» Multi-stage filters to filter out uncommon strings

 Scalable bitmaps to tell if number of distinct
addresses per hash crosses threshold

 This is fast enough to implement
— Netsift bought by Cisco

(Stefan Savage, UCSD *)




False Negatives

» Easy to prove presence, impossible to prove absence

« Live evaluation: over 8 months detected every worm
outbreak reported on popular security mailing lists

« Offline evaluation: several traffic traces run against both
Earlybird and Snort IDS (w/all worm-related signatures)
— Worms not detected by Snort, but detected by Earlybird
— The converse never true

(Stefan Savage, UCSD *)

False Positives

« Common protocol headers GNUTELLA.CONNECT
— Mainly HTTP and SMTP 70.6. . X-Max-TTL:
headers -3..X-Dynamic-Qu

— Distributed (P2P) system erying:. 0.1..X-V
protocol headers ersion: .4.0:4. X

— Procedural whitelist -Query-Routing: .

» Small number of popular 0. :!. -- U§er-Agent:
protocols _LimeWire/4.0.6.

« Non-worm -Vendor-Message:
epidemic Activity -0.1..X-Ultrapee

_ SPAM r-Query-Routing:

— BitTorrent

(Stefan Savage, UCSD *)

Other Disadvantages

* Insufficient for polymorphic worms & unseen variants
* What kinds of invariants can it discover?
— Depending on the classes of functions learned
— What other functions may be of interest to learn?
* No guarantee of signature quality
— How to evaluate signature quality?
» Susceptible to adversarial learning
— Attackers crafting malicious samples
— How?
* Purely bit-pattern syntactic approach, so no semantic
understanding of vulnerability
— Only generating exploit-signatures




Another Approach

* Semantic-based detection & defense

Administravia

» Group effort for project

Sting: Automatic Immune System

B agy 0
Exploit Detected!

* Requirements:
— Fast
— No false positives
— Handle morphing attacks
— Work directly on binary (for commodity software, legacy code),,




Solution: Semantic-based

* Focus on the root cause (the vulnerability)

» Detect exploits, diagnose, generate antibodies

—[NDSSO05, IEEE S&P05, IEEE S&P06, RAID06, NDSS06,
CSF07, Eurosys07]
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Exploit Detection

* Question:
Will given network inputs exploit new vulnerability?

« Use binary instrumentation to detect safety violations
— E.g., dynamic taint analysis

« Advantages:
— Semantic-based: focus on root cause of attack
» In contrast to behavior-based detection
— Detects wide spectrum of overwrite attacks
» Higher coverage than previous techniques
— Supports causality analysis

— No false positives (with verification), low false negatives

HTTP-like Example

L

;. ir::thzr:e:lll(f_[:]t-tp( char *input ) { Y/ it,ajli:;a,':,is,j

3. if (strncmp(input, “get”,3) 1= 0 && char *input

2. strncn;p(input, “put”’,3)1=0) return address
. return -1;

6. if (input[3] != /) return -1; buf

7. strncpy( buf, input, 4);

8. inti=4; Imov %al,(%edx,%ecx,1) KL

9.  while (input[i] !=%

10.  {buffi] = input[il},

1. i+ } Vulnerability )
12, returni; condition: i 2 8 input
13. }




Dynamic Taint Analysis

* Dynamic binary

instrumentation to track taint ;/////////
. prev stack frames /
propagation o
— Data from untrusted sources: char *input
tainted
— Keep track of taint propagation return address %
during program execution f/" buf 7
— Detect when tainted data is Y 4
misused: safety violation TP S
» e.g., as return address or
function pointer
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Automatic Diagnosis
» Extract vulnerability
information: FFEFFEFEFS
— The Vulnerability Condition: {‘,prev stack frames
Necessary conditions to violate safety

— The Vulnerability Point: char *input

Location vulnerability condition first
satisfied
Attack attribution: identify
input that triggered
vulnerability
— Approach: Back trace dynamic
taint propagation

return address

# network packet

Automatic Vulnerability Signature Generation

« Instead of bit patterns, use root cause
— Generating signatures based on vulnerability

» As exploits morph, they need to trigger vulnerability
* So, vulnerability puts constraints on exploits

* Problem reduction:
— Signature generation =
constraints on inputs that trigger vulnerability

* Symbolic execution
— A very useful concept, we’ll see more of it later in class

» Soundness guaranteed (no false positives)




Conclusion

« Worms
—What is a worm?
—How does it propagate?
—How to measure it?
* Detection & Defense
— Traffic monitoring based detection & defense
—Semantic-based detection & defense




