
1

Worms: Attacks and Defense (II)

Dawn Song
dawnsong@cs.berkeley.edu

2

Review
• Worms

– Self-propagating
– How does worm propagate?
– Worm modeling & measurement

• Today: defenses

3

Identifying Worm Patterns
• Monitor network and look for strings

common to traffic with worm-like behavior
– EarlyBird
– Signatures can then be used for content filtering

Slide: S Savage

4

Content sifting
• Assume there exists some (relatively) unique invariant

bitstring W across all instances of a particular worm
(true today, not tomorrow...)

• Two consequences
– Content Prevalence: W will be more common in traffic than other

bitstrings of the same length
– Address Dispersion: the set of packets containing W will address

a disproportionate number of distinct sources and destinations
• Content sifting: find W’s with high content prevalence

and high address dispersion and drop that traffic

Slide: S Savage

5

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1 10 100 1000 10000 100000

Only 0.6% of the 40 byte
substrings repeat more
than 3 times in a minute

Number of repeats

C
um

ul
at

iv
e

fr
ac

tio
n

of
 s

ig
na

tu
re

s

Observation:
High-prevalence strings are rare

(Stefan Savage, UCSD *)

6

Address Dispersion Table
Sources DestinationsPrevalence Table

The basic algorithm

Detector in
network

A B

cnn.com
C

DE

(Stefan Savage, UCSD *)

7

1 (B)1 (A)

Address Dispersion Table
Sources Destinations

1
Prevalence Table

The basic algorithm

Detector in
network

A B

cnn.com
C

DE

(Stefan Savage, UCSD *)

8
1 (A)1 (C)
1 (B)1 (A)

Address Dispersion Table
Sources Destinations

1
1

Prevalence Table

The basic algorithm

Detector in
network

A B

cnn.com
C

DE

(Stefan Savage, UCSD *)

9
1 (A)1 (C)

2 (B,D)2 (A,B)

Address Dispersion Table
Sources Destinations

1
2

Prevalence Table

The basic algorithm

Detector in
network

A B

cnn.com
C

DE

(Stefan Savage, UCSD *)

10
1 (A)1 (C)

3 (B,D,E)3 (A,B,D)

Address Dispersion Table
Sources Destinations

1
3

Prevalence Table

The basic algorithm

Detector in
network

A B

cnn.com
C

DE

(Stefan Savage, UCSD *)

11

Challenges
• Computation

– To support a 1Gbps line rate we have 12us to process
each packet, at 10Gbps 1.2us, at 40Gbps…

» Dominated by memory references; state expensive
– Content sifting requires looking at every byte in a

packet
• State

– On a fully-loaded 1Gbps link a naïve implementation can
easily consume 100MB/sec for table

– Computation/memory duality: on high-speed (ASIC)
implementation, latency requirements may limit state to
on-chip SRAM

(Stefan Savage, UCSD *)

12

Which substrings to index?

• Approach 1: Index all substrings
– Way too many substrings too much computation too

much state

• Approach 2: Index whole packet
– Very fast but trivially evadable (e.g., Witty, Email Viruses)

• Approach 3: Index all contiguous substrings of a fixed length ‘S’
– Can capture all signatures of length ‘S’ and larger

A B C D E F G H I J K

(Stefan Savage, UCSD *)

13

How to represent substrings?
• Store hash instead of literal to reduce state
• Incremental hash to reduce computation
• Rabin fingerprint is one such efficient incremental

hash function [Rabin81,Manber94]
– One multiplication, addition and mask per byte

R A N D A B C D O M

R A B C D A N D O M

P1

P2

Fingerprint = 11000000

Fingerprint = 11000000

(Stefan Savage, UCSD *)

14

How to subsample?
• Approach 1: sample packets

– If we chose 1 in N, detection will be slowed by N
• Approach 2: sample at particular byte offsets

– Susceptible to simple evasion attacks
– No guarantee that we will sample same sub-string in

every packet
• Approach 3: sample based on the hash of the

substring

(Stefan Savage, UCSD *)

15

Solution
• Index fixed-length substrings using incremental

hashes
• Subsample hashes as function of hash value
• Multi-stage filters to filter out uncommon strings
• Scalable bitmaps to tell if number of distinct

addresses per hash crosses threshold

• This is fast enough to implement
– Netsift bought by Cisco

(Stefan Savage, UCSD *)

16

False Negatives
• Easy to prove presence, impossible to prove absence

• Live evaluation: over 8 months detected every worm
outbreak reported on popular security mailing lists

• Offline evaluation: several traffic traces run against both
Earlybird and Snort IDS (w/all worm-related signatures)

– Worms not detected by Snort, but detected by Earlybird
– The converse never true

(Stefan Savage, UCSD *)

17

False Positives
• Common protocol headers

– Mainly HTTP and SMTP
headers

– Distributed (P2P) system
protocol headers

– Procedural whitelist
» Small number of popular

protocols

• Non-worm
epidemic Activity

– SPAM
– BitTorrent

GNUTELLA.CONNECT
/0.6..X-Max-TTL:
.3..X-Dynamic-Qu
erying:.0.1..X-V
ersion:.4.0.4..X
-Query-Routing:.
0.1..User-Agent:
.LimeWire/4.0.6.
.Vendor-Message:
.0.1..X-Ultrapee
r-Query-Routing:

(Stefan Savage, UCSD *)

18

Other Disadvantages

• Insufficient for polymorphic worms & unseen variants
• What kinds of invariants can it discover?

– Depending on the classes of functions learned
– What other functions may be of interest to learn?

• No guarantee of signature quality
– How to evaluate signature quality?

• Susceptible to adversarial learning
– Attackers crafting malicious samples
– How?

• Purely bit-pattern syntactic approach, so no semantic
understanding of vulnerability

– Only generating exploit-signatures

19

Another Approach
• Semantic-based detection & defense

20

Administravia
• Group effort for project

21

Sting: Automatic Immune System

Exploit Detected!
• Requirements:

– Fast
– No false positives
– Handle morphing attacks
– Work directly on binary (for commodity software, legacy code)

22

Solution: Semantic-based
• Focus on the root cause (the vulnerability)
• Detect exploits, diagnose, generate antibodies

– [NDSS05, IEEE S&P05, IEEE S&P06, RAID06, NDSS06,
CSF07, Eurosys07]

Inputs Exploit
Detector

Antibody
GeneratorVulnerability

Info

Diagnosis
Engine

Exploits

Signatures Binary
Hardening

Input-based
Filtering

Inputs

23

Exploit Detection
• Question:

Will given network inputs exploit new vulnerability?

• Use binary instrumentation to detect safety violations
– E.g., dynamic taint analysis

• Advantages:
– Semantic-based: focus on root cause of attack

» In contrast to behavior-based detection
– Detects wide spectrum of overwrite attacks

» Higher coverage than previous techniques
– Supports causality analysis
– No false positives (with verification), low false negatives

24

HTTP-like Example

1. int check_http(char *input) {
2. char buf[8];
3. if (strncmp(input, “get”,3) != 0 &&
4. strncmp(input, “put”,3) != 0)
5. return -1;
6. if (input[3] != ‘/‘) return -1;
7. strncpy(buf, input, 4);
8. int i = 4;
9. while (input[i] != ‘\n‘)
10. { buf[i] = input[i];
11. i++; }
12. return i;
13. }

char *input

return address

stack frames

input

buf

Vulnerability
condition: i ≥ 8

mov %al,(%edx,%ecx,1)
%edx is EA of buf, %ecx is i

25

Dynamic Taint Analysis
• Dynamic binary

instrumentation to track taint
propagation

– Data from untrusted sources:
tainted

– Keep track of taint propagation
during program execution

– Detect when tainted data is
misused: safety violation

» e.g., as return address or
function pointer

char *input

prev stack frames

return address

buf

inputnetwork packet

26

Automatic Diagnosis
• Extract vulnerability

information:
– The Vulnerability Condition:

Necessary conditions to violate safety
– The Vulnerability Point:

Location vulnerability condition first
satisfied

• Attack attribution: identify
input that triggered
vulnerability

– Approach: Back trace dynamic
taint propagation

char *input

prev stack frames

return address

buf

network packet input

27

Automatic Vulnerability Signature Generation

• Instead of bit patterns, use root cause
– Generating signatures based on vulnerability

• As exploits morph, they need to trigger vulnerability

• So, vulnerability puts constraints on exploits

• Problem reduction:
– Signature generation =

constraints on inputs that trigger vulnerability

• Symbolic execution
– A very useful concept, we’ll see more of it later in class

• Soundness guaranteed (no false positives)

28

Conclusion
• Worms

– What is a worm?
– How does it propagate?
– How to measure it?

• Detection & Defense
– Traffic monitoring based detection & defense
– Semantic-based detection & defense

