
1

Software security; Common implementation flaws; 
Principles

Dawn Song
dawnsong@cs.berkeley.edu

2

Another Vulnerability
• char buf[80]; 
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

• What's wrong with this code?
• Hint – memcpy() prototype:

– void *memcpy(void *dest, const void *src, size_t n);

• Definition of size_t: typedef unsigned int size_t;

• Do you see it now?

3

Implicit Casting Bug
• Attacker provides a negative value for len

–if won’t notice anything wrong
– Execute memcpy() with negative third arg
– Third arg is implicitly cast to an unsigned int, and 

becomes a very large positive int
–memcpy() copies huge amount of memory into buf, 

yielding a buffer overrun!
• A signed/unsigned or an implicit casting bug

– Very nasty – hard to spot
• C compiler doesn’t warn about type mismatch 

between signed int and unsigned int
– Silently inserts an implicit cast
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Another Example
• size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);
...

• What’s wrong with this code?
– No buffer overrun problems (5 spare bytes)
– No sign problems (all ints are unsigned) 

• But, len+5 can overflow if len is too large
– If len = 0xFFFFFFFF, then len+5 is 4
– Allocate 4-byte buffer then read a lot more than 4 

bytes into it: classic buffer overrun!
• You have to know programming language’s 

semantics very well to avoid all the pitfalls
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Preventing overflow attacks
• Main problem:

– strcpy(), strcat(), sprintf() have no range checking.
– “Safe” versions  strncpy(), strncat() are misleading

» strncpy() may leave buffer unterminated.
» strncpy(), strncat()  encourage off by 1 bugs.

• Defenses:
– Type safe languages (Java, ML).    Legacy code?
– Mark stack as non-execute.   Random stack location.
– Static source code analysis.
– Run time checking:  StackGuard, Libsafe, SafeC, (Purify).
– Many more …
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Marking stack as non-execute

• Basic stack exploit can be prevented by marking 
stack segment as non-executable.

– NX-bit on AMD Athlon 64,     XD-bit on Intel P4 
“Prescott”.

» NX bit in every Page Table Entry (PTE)
– Support in SP2.  Code patches exist for Linux, Solaris.  

• Limitations:
– Does not defend against `return-to-libc’ exploit.

» Overflow sets ret-addr to address of libc function.
– Does not block more general overflow exploits:

» Overflow on heap:  overflow buffer next to func pointer.
– Some apps need executable stack (e.g. LISP interpreters).
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Run time checking: StackGuard

• Many many run-time checking techniques …
– Here, only discuss methods relevant to overflow protection.

• Solutions 1:  StackGuard (WireX)
– Run time tests for stack integrity. 
– Embed “canaries” in stack frames and verify their 

integrity prior to function return.

argsretsfplocal
top
of

stack
canaryargsretsfplocal canary

Frame 1Frame 2
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Run time checking: Libsafe

• Solutions 2:  Libsafe (Avaya Labs)
– Dynamically loaded library.
– Intercepts calls to  strcpy (dest, src)

» Validates sufficient space in current stack frame:
|frame-pointer – dest| > strlen(src)

» If so, does strcpy.   
Otherwise, terminates application.

destret-addrsfp
top
of

stack
src buf ret-addrsfp

libsafe main
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More methods …

• StackShield
– At function prologue, copy return address RET and SFP to 

“safe” location  (beginning of data segment)
– Upon return, check that RET and SFP is equal to copy.
– Implemented as assembler file processor (GCC)

• Randomization:
– PaX ASLR:  Randomize location of libc.

» Attacker cannot jump directly to exec function.

– Instruction Set Randomization (ISR)
» Attacker cannot execute its own code.
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Non-Language-Specific Vulnerabilities

• int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only regular files allowed!");
return -1;

}
return open(path, O_RDONLY);

}

• Code to open only regular files
– Not symlink, directory, nor special device

• On Unix, uses stat() call to extract file’s 
meta-data 

• Then, uses open() call to open the file
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The Flaw?
• Code assumes FS is unchanged between stat()

and open() calls – Never assume anything…
• An attacker could change file referred to by path

in between stat() and open()
– From regular file to another kind
– Bypasses the check in the code!
– If check was a security check, attacker can subvert 

system security
• Time-Of-Check To Time-Of-Use (TOCTTOU) 

vulnerability
– Meaning of path changed from time it is checked 

(stat()) and time it is used (open())
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TOCTTOU Vulnerability
• In Unix, often occurs with filesystem calls 

because system calls are not atomic
• But, TOCTTOU vulnerabilities can arise 

anywhere there is mutable state shared 
between two or more entities

– Example: multi-threaded Java servlets and 
applications are at risk for TOCTTOU
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Many More Vulnerabilities…
• We’ve only scratched the surface!

– These are the most prevalent examples

• If it makes you just a bit more cautious 
about how you write code, good!

• In future lectures, we’ll discuss how to 
prevent (or reduce the likelihood of) these 
kinds of flaws, and to improve the odds of 
surviving any flaws that do creep in
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Administrivia

• Office hour this week moved to Thu 4pm.
• From next week on, office hour moved to 

Wed 5pm.
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Principles of Secure Software
• Let’s explore some principles for building 

secure systems
– Trusted Computing Base & several principles

• These principles are neither necessary nor 
sufficient to ensure a secure system design, 
but they are often very helpful

• Goal is to explore what you can do at design 
time to improve security

– How to choose an architecture that helps reduce 
likelihood of system flaws (or increases survival rate)

• Next lecture: what to do at implementation time
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The Trusted Computing Base (TCB)

• Trusted Component: 
– A system part we rely upon to operate 

correctly for system security
– (A part that can violate our security goals)

• Trustworthy components:
– System parts that we’re justified in trusting 

(assume correct operation)
• In Unix, the super-user (root) is trusted

– Hopefully they are also trustworthy…
• Trusted Computing Base:

– System portion(s) that must operate correctly 
for system security goals to be assured
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TCB Definition
• We rely on every component in TCB 

working correctly

• Anything outside isn’t relied upon
– Can’t defeat system’s security goals even if it 

misbehaves or is malicious

• TCB definition: 
– Must be large enough so that nothing outside 

the TCB can violate security
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TCB Example
• Security goal: only authorized users 

allowed to log into my system using SSH
• What is the TCB?

– TCB includes SSH daemon (it makes 
authentication and authorization decisions)

– If sshd has a bug (buf overrun) or was 
maliciously reprogrammed (backdoor), it can 
violate security goal by allowing unauthorized 
access

– TCB also includes OS (can tamper with sshd’s
operation and address space)

– TCB also includes CPU (rely on it to execute 
sshd correctly)
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TCB Example (continued)
• What about a web browser application on 

the same machine? Is it in the TCB?
• Hopefully not! 

– OS is supposed to protect sshd from other 
unprivileged applications

• Another ex.: network perimeter firewall 
– Enforces security goal that only authorized 

connections are permitted into internal net
• In this example, the firewall is the TCB for 

this security goal
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Why Keep the TCB Simple and Small?
• Good practice!

– Less code you write, less chances to make mistakes 
or introduces implementation flaws

• Industry standard error rates are 1–5 defects 
per thousand Lines of Code (kLoC)

– TCB containing 1 kLoC might have 1–5 defects
– 100 kLoC TCB might have 100–500 defects!
– (Windows XP is about 40,000 kLoC of TCB!!)

» Almost all of which is the TCB

• Lesson: 
– Shed code and design system so as much code can 

be moved outside the TCB as possible
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TCBs: What are They Good for?
• Is the TCB concept just an esoteric idea?

– No, it is a very powerful and pragmatic idea
– TCB allows primitive, yet effective modularity

• Separates system into two parts: security-
critical (TCB) and everything else

• Building secure and correct systems is hard!
– More pieces makes security assurance harder
– Only parts in TCB must be correct for system 

security –> focus efforts where they matter
– Making TCB small gives us better odds of ending up 

with a secure system
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Ex: Email Retention for National Archives

• National Archives chartered with saving a 
copy of every email ever sent by 
government officials

– Security Goal: Ensure that saved records 
cannot be deleted or destroyed

– Someone being investigated might try to 
destroy embarrassing or incriminating 
archived documents

• We need an “append-only” document 
storage system

– How can we do it?
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A Possible Approach
• Augment email program on every desktop 

computer to save a copy of all emails to a special 
directory on that computer

– What's the TCB for this approach?
» TCB includes every copy of email application on every

government machine
» Also OS, all privileged SW, and sys admins

• That’s an awfully large TCB!
– Unlikely that everything in TCB works correctly

• Also, any sys admin can delete files from the 
special directory after the fact

• We’d better find a better solution!!
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Another Approach
• Set up a high-speed networked printer

– An email is “collected” when it is printed
– Printer room is locked to prevent tampering
– What’s the TCB in this system?

» TCB includes room’s physical security
» Also includes the printer

• Suppose we add a ratchet to paper spool so 
that it can only rotate forward 

– Don’t need to trust the rest of the printer
• Wow! 

– TCB is only this ratchet, and room’s physical 
security, nothing else!

• But, our approach uses a lot of paper!
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An All-Electronic Approach
• Networked PC running special server SW

– Accepts email msgs and adds them its local FS
– FS carefully implemented to provide write-once 

semantics: once a file is created, it can never be 
overwritten or deleted

– Packet filter blocks all non-email connections
• What’s in the TCB now?

– Server PC/app/OS/FS, privileged apps on PC, packet 
FW, PC’s sys admins, room’s physical security, …

• TCB is bigger than with a printer, but smaller 
than all machines approach’s TCB
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TCB Principles Summary
• Know what is in the TCB

– Design your system so that the TCB is clearly 
identifiable

• Keep It Simple, Stupid (KISS) 
– The simpler the TCB, the greater the chances you 

can get it right
• Decompose for security

– Choose a system decomposition/modularization 
based on simple/clear TCB

» Not just functionality or performance grounds
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Three Cryptographic Principles
• Three principles widely accepted in crypto 

community that seem useful in computer security
– Conservative Design
– Kerkhoff’s Principle
– Proactively Study Attacks
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1. Conservative Design
• Systems should be evaluated according to 

worst plausible security failure, under 
assumptions favorable to attacker

• If you find such circumstance where the 
system can be rendered insecure, then 
you should seek a more secure system
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2. Kerkhoff’s Principle
• Cryptosystems should remain secure 

even when the attacker knows all internal 
details of the system

• The key should be the only thing that 
must be kept secret

• If your secrets are leaked, it is a lot easier 
to change the key than to change the 
algorithm
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3. Proactively Study Attacks
• We must devote considerable effort to trying 

to break our own systems
– How we can gain confidence in their security

• Other reasons:
– In security game, attacker gets last move
– Very costly if a security hole is discovered after 

wide system deployment
• Pays to try to identify attacks before bad 

guys find them
– Gives us lead time to close security holes before 

they are exploited in the wild
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Principles for Secure Systems
• General principles for secure system design

– Many drawn from a classic 1970s paper by Saltzer and 
Schroeder

• 1. Security is Economics
– No system is 100% secure against all attacks

» Only need to resist a certain level of attack
» No point buying a $10K firewall to protect $1K worth of 

trade secrets
– Often helpful to quantify level of effort an attacker 

would expend to break the system.
– Adi Shamir once wrote, “There are no secure 

systems, only degrees of insecurity”
» A lot of the science of computer security comes in 

measuring the degree of insecurity

32

Economics Analogy
• Safes come with a security level rating
• Consumer-grade safe:

– Rated to resist attack for up to 5 minutes by 
anyone without tools

• High-end safe might be rated TL-30
– Secure against burglar with safecracking tools 

and less than 30 minutes access 
– We can hire security guards with a less than 30 

minute response time to any intrusion
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Corollary of This Principle
• Focus your energy on securing weakest links

– Security is like a chain: it is only as secure as the 
weakest link

– Attackers follow the path of least resistance, and will 
attack system at its weakest point

• No point in putting an expensive high-end 
deadbolt on a screen door

– Attacker isn’t going to bother trying to pick the lock 
when he can just rip out the screen and step through!
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2. Least Privilege
• Minimize how much privilege you give each 

program and system component
– Only give a program the minimum access 

privileges it legitimately needs to do its job
• Least privilege is a powerful approach

– Doesn’t reduce failure probability, but can reduce 
expected cost of failures

• Less privilege a program has, less harm it 
can do if it goes awry or runs amok

– Computer-age version of shipbuilder’s notion of 
“watertight compartments”:

» Even if one compartment is breached, we minimize 
damage to rest of system’s integrity
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Principle of Least Privilege Examples
• Can help reduce damage caused by buffer 

overruns or other program vulnerabilities
– Intruder gains all the program’s privileges
– Fewer privileges a program has, less harm done if 

it is compromised
• How is Unix in terms of least privilege?

– Answer: Pretty lousy!
– Programs gets all privileges of invoking users
– I edit a file and editor receives all my user 

account’s privileges (read, modify, delete)
• Strictly speaking editor only needs access to 

file being edited to get job done
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Principle of Least Privilege Examples
• How is Windows in terms of least privilege?

– Answer:  Just as lousy!
– Arguably worse, as many users run as 

Administrator and many Windows programs 
require Administrator access to run

• Every program receives total power over the 
whole computer!!

• Microsoft’s security team recognizes this risk
– Advice: Use limited privilege account and “Run 

As…”


