
1

Software security; Common implementation flaws;
Principles

Dawn Song
dawnsong@cs.berkeley.edu

2

Another Vulnerability
• char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

• What's wrong with this code?
• Hint – memcpy() prototype:

– void *memcpy(void *dest, const void *src, size_t n);

• Definition of size_t: typedef unsigned int size_t;

• Do you see it now?

3

Implicit Casting Bug
• Attacker provides a negative value for len

–if won’t notice anything wrong
– Execute memcpy() with negative third arg
– Third arg is implicitly cast to an unsigned int, and

becomes a very large positive int
–memcpy() copies huge amount of memory into buf,

yielding a buffer overrun!
• A signed/unsigned or an implicit casting bug

– Very nasty – hard to spot
• C compiler doesn’t warn about type mismatch

between signed int and unsigned int
– Silently inserts an implicit cast

4

Another Example
• size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);
...

• What’s wrong with this code?
– No buffer overrun problems (5 spare bytes)
– No sign problems (all ints are unsigned)

• But, len+5 can overflow if len is too large
– If len = 0xFFFFFFFF, then len+5 is 4
– Allocate 4-byte buffer then read a lot more than 4

bytes into it: classic buffer overrun!
• You have to know programming language’s

semantics very well to avoid all the pitfalls

5

Preventing overflow attacks
• Main problem:

– strcpy(), strcat(), sprintf() have no range checking.
– “Safe” versions strncpy(), strncat() are misleading

» strncpy() may leave buffer unterminated.
» strncpy(), strncat() encourage off by 1 bugs.

• Defenses:
– Type safe languages (Java, ML). Legacy code?
– Mark stack as non-execute. Random stack location.
– Static source code analysis.
– Run time checking: StackGuard, Libsafe, SafeC, (Purify).
– Many more …

6

Marking stack as non-execute

• Basic stack exploit can be prevented by marking
stack segment as non-executable.

– NX-bit on AMD Athlon 64, XD-bit on Intel P4
“Prescott”.

» NX bit in every Page Table Entry (PTE)
– Support in SP2. Code patches exist for Linux, Solaris.

• Limitations:
– Does not defend against `return-to-libc’ exploit.

» Overflow sets ret-addr to address of libc function.
– Does not block more general overflow exploits:

» Overflow on heap: overflow buffer next to func pointer.
– Some apps need executable stack (e.g. LISP interpreters).

7

Run time checking: StackGuard

• Many many run-time checking techniques …
– Here, only discuss methods relevant to overflow protection.

• Solutions 1: StackGuard (WireX)
– Run time tests for stack integrity.
– Embed “canaries” in stack frames and verify their

integrity prior to function return.

argsretsfplocal
top
of

stack
canaryargsretsfplocal canary

Frame 1Frame 2

8

Run time checking: Libsafe

• Solutions 2: Libsafe (Avaya Labs)
– Dynamically loaded library.
– Intercepts calls to strcpy (dest, src)

» Validates sufficient space in current stack frame:
|frame-pointer – dest| > strlen(src)

» If so, does strcpy.
Otherwise, terminates application.

destret-addrsfp
top
of

stack
src buf ret-addrsfp

libsafe main

9

More methods …

• StackShield
– At function prologue, copy return address RET and SFP to

“safe” location (beginning of data segment)
– Upon return, check that RET and SFP is equal to copy.
– Implemented as assembler file processor (GCC)

• Randomization:
– PaX ASLR: Randomize location of libc.

» Attacker cannot jump directly to exec function.

– Instruction Set Randomization (ISR)
» Attacker cannot execute its own code.

10

Non-Language-Specific Vulnerabilities

• int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only regular files allowed!");
return -1;

}
return open(path, O_RDONLY);

}

• Code to open only regular files
– Not symlink, directory, nor special device

• On Unix, uses stat() call to extract file’s
meta-data

• Then, uses open() call to open the file

11

The Flaw?
• Code assumes FS is unchanged between stat()

and open() calls – Never assume anything…
• An attacker could change file referred to by path

in between stat() and open()
– From regular file to another kind
– Bypasses the check in the code!
– If check was a security check, attacker can subvert

system security
• Time-Of-Check To Time-Of-Use (TOCTTOU)

vulnerability
– Meaning of path changed from time it is checked

(stat()) and time it is used (open())

12

TOCTTOU Vulnerability
• In Unix, often occurs with filesystem calls

because system calls are not atomic
• But, TOCTTOU vulnerabilities can arise

anywhere there is mutable state shared
between two or more entities

– Example: multi-threaded Java servlets and
applications are at risk for TOCTTOU

13

Many More Vulnerabilities…
• We’ve only scratched the surface!

– These are the most prevalent examples

• If it makes you just a bit more cautious
about how you write code, good!

• In future lectures, we’ll discuss how to
prevent (or reduce the likelihood of) these
kinds of flaws, and to improve the odds of
surviving any flaws that do creep in

14

Administrivia

• Office hour this week moved to Thu 4pm.
• From next week on, office hour moved to

Wed 5pm.

15

Principles of Secure Software
• Let’s explore some principles for building

secure systems
– Trusted Computing Base & several principles

• These principles are neither necessary nor
sufficient to ensure a secure system design,
but they are often very helpful

• Goal is to explore what you can do at design
time to improve security

– How to choose an architecture that helps reduce
likelihood of system flaws (or increases survival rate)

• Next lecture: what to do at implementation time

16

The Trusted Computing Base (TCB)

• Trusted Component:
– A system part we rely upon to operate

correctly for system security
– (A part that can violate our security goals)

• Trustworthy components:
– System parts that we’re justified in trusting

(assume correct operation)
• In Unix, the super-user (root) is trusted

– Hopefully they are also trustworthy…
• Trusted Computing Base:

– System portion(s) that must operate correctly
for system security goals to be assured

17

TCB Definition
• We rely on every component in TCB

working correctly

• Anything outside isn’t relied upon
– Can’t defeat system’s security goals even if it

misbehaves or is malicious

• TCB definition:
– Must be large enough so that nothing outside

the TCB can violate security

18

TCB Example
• Security goal: only authorized users

allowed to log into my system using SSH
• What is the TCB?

– TCB includes SSH daemon (it makes
authentication and authorization decisions)

– If sshd has a bug (buf overrun) or was
maliciously reprogrammed (backdoor), it can
violate security goal by allowing unauthorized
access

– TCB also includes OS (can tamper with sshd’s
operation and address space)

– TCB also includes CPU (rely on it to execute
sshd correctly)

19

TCB Example (continued)
• What about a web browser application on

the same machine? Is it in the TCB?
• Hopefully not!

– OS is supposed to protect sshd from other
unprivileged applications

• Another ex.: network perimeter firewall
– Enforces security goal that only authorized

connections are permitted into internal net
• In this example, the firewall is the TCB for

this security goal

20

Why Keep the TCB Simple and Small?
• Good practice!

– Less code you write, less chances to make mistakes
or introduces implementation flaws

• Industry standard error rates are 1–5 defects
per thousand Lines of Code (kLoC)

– TCB containing 1 kLoC might have 1–5 defects
– 100 kLoC TCB might have 100–500 defects!
– (Windows XP is about 40,000 kLoC of TCB!!)

» Almost all of which is the TCB

• Lesson:
– Shed code and design system so as much code can

be moved outside the TCB as possible

21

TCBs: What are They Good for?
• Is the TCB concept just an esoteric idea?

– No, it is a very powerful and pragmatic idea
– TCB allows primitive, yet effective modularity

• Separates system into two parts: security-
critical (TCB) and everything else

• Building secure and correct systems is hard!
– More pieces makes security assurance harder
– Only parts in TCB must be correct for system

security –> focus efforts where they matter
– Making TCB small gives us better odds of ending up

with a secure system

22

Ex: Email Retention for National Archives

• National Archives chartered with saving a
copy of every email ever sent by
government officials

– Security Goal: Ensure that saved records
cannot be deleted or destroyed

– Someone being investigated might try to
destroy embarrassing or incriminating
archived documents

• We need an “append-only” document
storage system

– How can we do it?

23

A Possible Approach
• Augment email program on every desktop

computer to save a copy of all emails to a special
directory on that computer

– What's the TCB for this approach?
» TCB includes every copy of email application on every

government machine
» Also OS, all privileged SW, and sys admins

• That’s an awfully large TCB!
– Unlikely that everything in TCB works correctly

• Also, any sys admin can delete files from the
special directory after the fact

• We’d better find a better solution!!

24

Another Approach
• Set up a high-speed networked printer

– An email is “collected” when it is printed
– Printer room is locked to prevent tampering
– What’s the TCB in this system?

» TCB includes room’s physical security
» Also includes the printer

• Suppose we add a ratchet to paper spool so
that it can only rotate forward

– Don’t need to trust the rest of the printer
• Wow!

– TCB is only this ratchet, and room’s physical
security, nothing else!

• But, our approach uses a lot of paper!

25

An All-Electronic Approach
• Networked PC running special server SW

– Accepts email msgs and adds them its local FS
– FS carefully implemented to provide write-once

semantics: once a file is created, it can never be
overwritten or deleted

– Packet filter blocks all non-email connections
• What’s in the TCB now?

– Server PC/app/OS/FS, privileged apps on PC, packet
FW, PC’s sys admins, room’s physical security, …

• TCB is bigger than with a printer, but smaller
than all machines approach’s TCB

26

TCB Principles Summary
• Know what is in the TCB

– Design your system so that the TCB is clearly
identifiable

• Keep It Simple, Stupid (KISS)
– The simpler the TCB, the greater the chances you

can get it right
• Decompose for security

– Choose a system decomposition/modularization
based on simple/clear TCB

» Not just functionality or performance grounds

27

Three Cryptographic Principles
• Three principles widely accepted in crypto

community that seem useful in computer security
– Conservative Design
– Kerkhoff’s Principle
– Proactively Study Attacks

28

1. Conservative Design
• Systems should be evaluated according to

worst plausible security failure, under
assumptions favorable to attacker

• If you find such circumstance where the
system can be rendered insecure, then
you should seek a more secure system

29

2. Kerkhoff’s Principle
• Cryptosystems should remain secure

even when the attacker knows all internal
details of the system

• The key should be the only thing that
must be kept secret

• If your secrets are leaked, it is a lot easier
to change the key than to change the
algorithm

30

3. Proactively Study Attacks
• We must devote considerable effort to trying

to break our own systems
– How we can gain confidence in their security

• Other reasons:
– In security game, attacker gets last move
– Very costly if a security hole is discovered after

wide system deployment
• Pays to try to identify attacks before bad

guys find them
– Gives us lead time to close security holes before

they are exploited in the wild

31

Principles for Secure Systems
• General principles for secure system design

– Many drawn from a classic 1970s paper by Saltzer and
Schroeder

• 1. Security is Economics
– No system is 100% secure against all attacks

» Only need to resist a certain level of attack
» No point buying a $10K firewall to protect $1K worth of

trade secrets
– Often helpful to quantify level of effort an attacker

would expend to break the system.
– Adi Shamir once wrote, “There are no secure

systems, only degrees of insecurity”
» A lot of the science of computer security comes in

measuring the degree of insecurity

32

Economics Analogy
• Safes come with a security level rating
• Consumer-grade safe:

– Rated to resist attack for up to 5 minutes by
anyone without tools

• High-end safe might be rated TL-30
– Secure against burglar with safecracking tools

and less than 30 minutes access
– We can hire security guards with a less than 30

minute response time to any intrusion

33

Corollary of This Principle
• Focus your energy on securing weakest links

– Security is like a chain: it is only as secure as the
weakest link

– Attackers follow the path of least resistance, and will
attack system at its weakest point

• No point in putting an expensive high-end
deadbolt on a screen door

– Attacker isn’t going to bother trying to pick the lock
when he can just rip out the screen and step through!

34

2. Least Privilege
• Minimize how much privilege you give each

program and system component
– Only give a program the minimum access

privileges it legitimately needs to do its job
• Least privilege is a powerful approach

– Doesn’t reduce failure probability, but can reduce
expected cost of failures

• Less privilege a program has, less harm it
can do if it goes awry or runs amok

– Computer-age version of shipbuilder’s notion of
“watertight compartments”:

» Even if one compartment is breached, we minimize
damage to rest of system’s integrity

35

Principle of Least Privilege Examples
• Can help reduce damage caused by buffer

overruns or other program vulnerabilities
– Intruder gains all the program’s privileges
– Fewer privileges a program has, less harm done if

it is compromised
• How is Unix in terms of least privilege?

– Answer: Pretty lousy!
– Programs gets all privileges of invoking users
– I edit a file and editor receives all my user

account’s privileges (read, modify, delete)
• Strictly speaking editor only needs access to

file being edited to get job done

36

Principle of Least Privilege Examples
• How is Windows in terms of least privilege?

– Answer: Just as lousy!
– Arguably worse, as many users run as

Administrator and many Windows programs
require Administrator access to run

• Every program receives total power over the
whole computer!!

• Microsoft’s security team recognizes this risk
– Advice: Use limited privilege account and “Run

As…”

