Automatic Tools for Finding Bugs

Dawn Song
dawnsong@cs.berkeley.edu

Important to Develop Techniques to Discover
Bugs/Vulnerabilities in Programs

Programs tend to have bugs

Ideally, prove programs correct/secure

—E.g., using pre/post condition & invariants as discussed
in earlier lecture

—However, automated proofs hard to scale to large
programs

One alternative, find as many bugs as we can
« Key question: how to find bugs in programs?

Approach I: Black-box Fuzz Testing

* Given a program, simply feed it random inputs,
see whether it crashes

* Advantage: really easy

» Disadvantage: inefficient

—Input often requires structures, random inputs are
likely to be malformed

—Inputs that would trigger a crash is a very small
fraction, probability of getting lucky may be very low

Enhancement: With Protocol/Format Info

* Mutation-based fuzzing:

—Take a well-formed input, randomly perturb (flipping
bit, etc.)

—E.g., ZZUF, very successful at finding bugs in many
real-world programs, http://sam.zoy.org/zzuf/
» Try out your own tool there
* Generation-based fuzzing
—Using specified protocols/file format info
—E.g., SPIKE by Immunity
http://www.immunitysec.com/resources-
freesoftware.shtml
e Shortcomings:

—Etill hard to find the rare cases that would trigger the
ug

Approach II: Constraint-based
Automatic Test Case Generation

* Look inside the box
— Use the code itself to guide the fuzzing

» Assert security/safety properties

* Explore different program execution paths to
check for security properties

» Challenge:

1. For agiven path, need to check whether an input can
trigger the bug, i.e., violate security property

2. Find inputs that will go down different program
execution paths

Running Example

f(unsigned int len){
unsigned int s;
char *buf;
if len % 2==0;
then s =len;
elses=len+2;
buf = malloc(s);
read(fd, buf, len);

}
* Where’s the bug?
* What's the security/safety property?
—s>=len
« What inputs will cause violation of the security property?
—len=2%2-1
« How likely will random testing find the bug?

Running Example

if len % 2==0

F T

‘ s=len+2 ‘ ‘ s=len ‘

assert(s>=len);
buf=malloc (s);
read(fd, buf, len);

Symbolic Execution

if len % 2==0

F T

‘ s=len+2 ‘ ‘ s=len ‘

assert(s>=len);
buf=malloc (s);
read(fd, buf, len);

* Test input len=6
* No assertion failure
* What about all inputs that takes the same path as len=6?

8

Symbolic Execution

if len % 2==0

F T

‘ s=len+2 ‘ ‘ s=len ‘

assert(s>=len);
buf=malloc (s);
read(fd, buf, len);

* What about all inputs that takes the same path as
len=6?

* Represent len as symbolic variable

Symbolic Execution

* Reprenset inputs as symbolic variables

» Perform each operation on symbolic variables
symbolically
-X=y+5;
* Registers and memory values dependent on
inputs become symoblic expressions

» Certain conditions for conditional jump become
symbolic expressions as well

Symbolic Execution

if len % 2==0 len % 2 = 0 (path constraint)

F T

‘s=|en+2 H s=len ‘ s =len

assert(s>=len); s<len?

buf=malloc (s);
read(fd, buf, len);

* What about all inputs that takes the same path as
len=67?

* Represent len as symbolic variable

Using a Solver

* |s there a value for len s.t.
len%2=0"s=len”"s<len?
» Give the symbolic formula to a solver
 In this case, the solver returns No
—The formula is not satisfiable
¢ What does this mean?

—For any len that follows the same path as len =6,
the execution will be safe

—Symbolic execution can check many inputs at the
same time for the same path

e What to do next?
—Try to explore different path

How to Explore Different Paths?

if len % 2==0

F T
‘ s=len+2 ‘ ‘ s=len ‘
< e

assert(s>=len);
buf=malloc (s);
read(fd, buf, len);

« Previous path constraint: len % 2 =0
« Flip the branch to go down a different path:
—len%2!=0
« Using a solver for the formula
— A satisfying assignment is a new input to go down the path 13

Checking Assertion in the Other Path

if len % 2==0 len % 2 != 0 (path constraint)

F T
‘s=|en+2 H s=len ‘ s=len+2

assert(s>=len); s<len?

buf=malloc (s);
read(fd, buf, len);

« Is there a value for len s.t.
len%2!=0"s=lent2" s <len?

* Give the symbolic formula to a solver
» Solver returns satisfying assignment: len = 232 -1
*Found the bug! M

Summary: Symbolic Execution for Bug Finding

* Symbolicly execution a path

—Create the formula representing:
path constraint ~ assertion failure

—Give the solver the formula
» If returns a satisfying assignment, a bug found
» Reverse condition for a branch to go down a
different path
—Give the solver the new path constraint
—If returns a satisfying assignment
» The path is feasible
» Found a new input going down a different path
* Pioneer work
—EXE, DART

Challenges

e Too many paths to explore
—Exponential or infinite # of paths

* How to address the challenge?
—Prioritize for block/branch coverage

Other Applicatoins to Symbolic Execution

» Automatic signature generation

« Automatic patch-based exploit generation

Administrivia

« HW4 due today

* Project milestone #2 due Wed

Other Applicatoins to Symbolic Execution

« Automatic signature generation

« Automatic patch-based exploit generation

Symbolic Execution for Signature Generation

* Instead of bit patterns, use root cause
—Generating signatures based on vulnerability

» As exploits morph, they need to trigger
vulnerability

* So, vulnerability puts constraints on exploits

* Problem reduction:
— Signature generation =
constraints on inputs that trigger vulnerability

» Symbolic execution ®

Identifying the Constraints

if len % 2==0 len % 2 != 0 (path constraint)

F T

‘s:Ien+2 H s=len ‘ s=len+2

assert(s>=len); s<len?
buf=malloc (s);
read(fd, buf, len);

» Given exploit len =232 -1

< Constraint on len to trigger vulnerability:
len% 2!=0"s=len+t2" s <len

« Use this constraint as the signature

Signature Quality

 False positive?
—-No
» False negative?
—Depending on path coverage
e Challenge
—Increase path coverage

Automatic Patch-based Exploit Generation

P [iflen % 2==0 P’ [iflen % 2==0

F T F T
‘ s=len+2 ‘ ‘ s=len ‘ s=len+2 s=len
~ N if s<len error();
buf=malloc (s); N
read(fd, buf, len); buf=malloc (s);

read(fd, buf, len);

e Patch leaks
— Vulnerability point (where in code)
— Vulnerability condition (under what conditions)
« Exploits for P are inputs that fail vulnerability
condition at vulnerability point
— len%2!=0"s=len+t2"s<len

Procedure Summary

1. Diff P and P’ to identify candidate vuln point and
condition

2. Create input that satisfy candidate vuln condition in P’
— i.e., candidate exploits

3. Check candidate exploits on P

Real-world Examples

» 5 Microsoft patches
—Mostly 2007

—Integer overflow, buffer overflow, information
disclosure, DoS

* Automatically generated exploits for all 5 patches
— In seconds to minutes
—3out of 5 have no publicly available exploits
—Automatically generated exploit variants for the other 2

Conclusion

» Automatic testing for bug finding
—Symbolic execution
» check all inputs along the same path at the same time
» Automatically finding new inputs to go down different paths
Other applications for symbolic execution
—Automatic signature generation
—Automatic patch-based exploit generation

