
1

Automatic Tools for Finding Bugs

Dawn Song
dawnsong@cs.berkeley.edu

2

Important to Develop Techniques to Discover
Bugs/Vulnerabilities in Programs

• Programs tend to have bugs
• Ideally, prove programs correct/secure

– E.g., using pre/post condition & invariants as discussed
in earlier lecture

– However, automated proofs hard to scale to large
programs

• One alternative, find as many bugs as we can
• Key question: how to find bugs in programs?

3

Approach I: Black-box Fuzz Testing
• Given a program, simply feed it random inputs,

see whether it crashes
• Advantage: really easy
• Disadvantage: inefficient

– Input often requires structures, random inputs are
likely to be malformed

– Inputs that would trigger a crash is a very small
fraction, probability of getting lucky may be very low

4

Enhancement: With Protocol/Format Info

• Mutation-based fuzzing:
– Take a well-formed input, randomly perturb (flipping

bit, etc.)
– E.g., ZZUF, very successful at finding bugs in many

real-world programs, http://sam.zoy.org/zzuf/
» Try out your own tool there

• Generation-based fuzzing
– Using specified protocols/file format info
– E.g., SPIKE by Immunity

http://www.immunitysec.com/resources-
freesoftware.shtml

• Shortcomings:
– Still hard to find the rare cases that would trigger the

bug

5

Approach II: Constraint-based
Automatic Test Case Generation

• Look inside the box
– Use the code itself to guide the fuzzing

• Assert security/safety properties
• Explore different program execution paths to

check for security properties
• Challenge:

1. For a given path, need to check whether an input can
trigger the bug, i.e., violate security property

2. Find inputs that will go down different program
execution paths

6

Running Example

• Where’s the bug?
• What’s the security/safety property?

– s>=len
• What inputs will cause violation of the security property?

– len = 232 - 1
• How likely will random testing find the bug?

f(unsigned int len){
unsigned int s;
char *buf;
if len % 2==0;
then s = len;
else s = len + 2;

buf = malloc(s);
read(fd, buf, len);
…

}

7

Running Example

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

8

Symbolic Execution

• Test input len=6
• No assertion failure
• What about all inputs that takes the same path as len=6?

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

9

Symbolic Execution

• What about all inputs that takes the same path as
len=6?

• Represent len as symbolic variable

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

10

Symbolic Execution
• Reprenset inputs as symbolic variables
• Perform each operation on symbolic variables

symbolically
– x = y + 5;

• Registers and memory values dependent on
inputs become symoblic expressions

• Certain conditions for conditional jump become
symbolic expressions as well

11

Symbolic Execution

• What about all inputs that takes the same path as
len=6?

• Represent len as symbolic variable

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

len % 2 = 0 (path constraint)

s = len

s<len?

12

Using a Solver
• Is there a value for len s.t.

len % 2 = 0 ^ s = len ^ s < len?
• Give the symbolic formula to a solver
• In this case, the solver returns No

– The formula is not satisfiable
• What does this mean?

– For any len that follows the same path as len = 6,
the execution will be safe

– Symbolic execution can check many inputs at the
same time for the same path

• What to do next?
– Try to explore different path

13

How to Explore Different Paths?

• Previous path constraint: len % 2 = 0
• Flip the branch to go down a different path:

– len % 2 != 0
• Using a solver for the formula

– A satisfying assignment is a new input to go down the path

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

14

Checking Assertion in the Other Path

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

len % 2 != 0 (path constraint)

s = len + 2

s<len?

• Is there a value for len s.t.
len % 2 != 0 ^ s = len+2 ^ s < len?

• Give the symbolic formula to a solver
• Solver returns satisfying assignment: len = 232 -1
• Found the bug!

15

Summary: Symbolic Execution for Bug Finding

• Symbolicly execution a path
– Create the formula representing:

path constraint ^ assertion failure
– Give the solver the formula

» If returns a satisfying assignment, a bug found

• Reverse condition for a branch to go down a
different path

– Give the solver the new path constraint
– If returns a satisfying assignment

» The path is feasible
» Found a new input going down a different path

• Pioneer work
– EXE, DART

16

Challenges
• Too many paths to explore

– Exponential or infinite # of paths

• How to address the challenge?
– Prioritize for block/branch coverage

17

Other Applicatoins to Symbolic Execution

• Automatic signature generation

• Automatic patch-based exploit generation

18

Administrivia
• HW4 due today

• Project milestone #2 due Wed

19

Other Applicatoins to Symbolic Execution

• Automatic signature generation

• Automatic patch-based exploit generation

20

Symbolic Execution for Signature Generation

• Instead of bit patterns, use root cause
– Generating signatures based on vulnerability

• As exploits morph, they need to trigger
vulnerability

• So, vulnerability puts constraints on exploits

• Problem reduction:
– Signature generation =

constraints on inputs that trigger vulnerability

• Symbolic execution

21

Identifying the Constraints

if len % 2==0

s = len + 2 s = len

assert(s>=len);

buf=malloc (s);

read(fd, buf, len);

TF

len % 2 != 0 (path constraint)

s = len + 2

s<len?

• Given exploit len = 232 -1
• Constraint on len to trigger vulnerability:

len % 2 != 0 ^ s = len+2 ^ s < len
• Use this constraint as the signature

22

Signature Quality
• False positive?

– No
• False negative?

– Depending on path coverage
• Challenge

– Increase path coverage

23

Automatic Patch-based Exploit Generation

• Patch leaks
– Vulnerability point (where in code)
– Vulnerability condition (under what conditions)

• Exploits for P are inputs that fail vulnerability
condition at vulnerability point

– len % 2 != 0 ^ s = len+2 ^ s < len

if len % 2==0

s = len + 2 s = len

buf=malloc (s);

read(fd, buf, len);

TF
if len % 2==0

s = len + 2

if s< len error();
s = len

buf=malloc (s);

read(fd, buf, len);

TF

P P’

24

Procedure Summary

1. Diff P and P’ to identify candidate vuln point and
condition

2. Create input that satisfy candidate vuln condition in P’
– i.e., candidate exploits

3. Check candidate exploits on P

25

Real-world Examples
• 5 Microsoft patches

– Mostly 2007
– Integer overflow, buffer overflow, information

disclosure, DoS
• Automatically generated exploits for all 5 patches

– In seconds to minutes
– 3 out of 5 have no publicly available exploits
– Automatically generated exploit variants for the other 2

26

Conclusion
• Automatic testing for bug finding

– Symbolic execution
» check all inputs along the same path at the same time
» Automatically finding new inputs to go down different paths

• Other applications for symbolic execution
– Automatic signature generation
– Automatic patch-based exploit generation

