
1

Privilege Separation and Isolation

Dawn Song
dawnsong@cs.berkeley.edu

2

The Story Continues…
• Programs have bugs and may not find all the

bugs ahead of time
• What can we do?

– Build security mechanisms to minimize damage
• Examples

– Priviledge separation to prevent priviledge escalation
– Isolation to protect other parts of the program and

other programs
– Sandboxing to limit the damage it does to the system
– General concept: reference monitor

3

Privileged Programs
• Privilege management is coarse-grained in

today’s OS
– Root can do anything

• Many programs run as root
– Even though they only need to perform a small

number of priviledged operations
• What’s the problem?

– Privileged programs are juicy targets for attackers
– By finding a bug in parts of the program that do not

need privilege, attacker can gain root

4

What Can We Do?
• Drop privilege as soon as possible
• Ex: a network daemon only needs privilege to

bind to low port # (<1024) at the beginning
– Solution?
– Drop privilege right after binding the port

• What benefit do we gain?
– Even if attacker finds a bug in later part of the code,

can’t gain privilege any more
• How to drop privilege?

5

Unix file security
• Each file has owner and group
• Permissions set by owner

– Read, write, execute
– Owner, group, other
– Represented by vector of

four octal values
• Only owner, root can change permissions

– This privilege cannot be delegated or shared
• Setid bits

– Talk about this in a sec

rwx rwxrwx-

ownr grp othr

setid

John Mitchel

6

Effective user id (EUID)

• Each process has three Ids
– Real user ID (RUID)

» same as the user ID of parent (unless changed)
» used to determine which user started the process

– Effective user ID (EUID)
» from set user ID bit on the file being executed, or sys call
» determines the permissions for process

• file access and port binding

– Saved user ID (SUID)
» So previous EUID can be restored

• Real group ID, effective group ID, used similarly

John Mitchel

7

Process Operations and IDs
• Root

– ID=0 for superuser root; can access any file
• Fork and Exec

– Inherit three IDs, except exec of file with setuid bit
• Setuid system calls

– seteuid(newid) can set EUID to
» Real ID or saved ID, regardless of current EUID
» Any ID, if EUID=0

• Why do we need to save previous EUID?

• Details are actually more complicated
– Several different calls: setuid, seteuid, setreuid

John Mitchel

8

Setid bits on executable Unix file
• Three setid bits

– Setuid – set EUID of process to ID of file owner
– Setgid – set EGID of process to GID of file
– Sticky

» Off: if user has write permission on directory, can
rename or remove files, even if not owner

» On: only file owner, directory owner, and root can
rename or remove file in the directory

John Mitchel

9

Example

…;
…;
exec();

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--

file

-rw-r--r--

file

Owner 18

Owner 25

read/write

read/write

Owner 18

John Mitchel

10

Setuid programming
• Be Careful!

– Root can do anything; don’ t get tricked
– Principle of least privilege – change EUID

when root privileges no longer needed
• Setuid scripts

– This is a bad idea
– Historically, race conditions

» Begin executing setuid program; change contents of
program before it loads and is executed

John Mitchel

11

What Happens if you can’t drop privilege?

• In what example scenarios does this happen?
– A service loop
– E.g., ssh

• Solution?
– Privilege separation
– Identifying operations that need privileges
– Separate original code into master (priviledged) and

slave (unprivileged)

12

Privilege Separation
• Process:

– Step 1: Identify which operations require privilege
– Step 2: rewrite programs into 2 or more parts

• Approach:
– Manual

» Have been done on security-critical programs, e.g., ssh
» Labor-intensive and may miss privileged operations

– Automatic
» Automatic inference of privileged operations using a few initial

annotations
» Automatic source-to-source rewriting

• Privileged code move into master
• Unprivileged code move into slave
• Stubs for inter communication

13

Automatic Privilege Separation
• Step 1: automatic inference of privileged data

and operations
– Given some initial annotations of privileged data

and/or operations, infer what other data/operations
are privileged

– Idea: can be viewed as a form of static taint analysis
– Approach:

» Define qualifier _priv_ and _unpriv_
» Operations on _priv_ results in _priv_

int _priv_ a;
Int _priv_ f();
int b = f(a);
c= c+b;
g(c);

priv b
priv c
priv g

14

Automatic Privilege Separation
• Step 2: automatic source-to-source

transformation
– Move privileged data and code to Master
– For call to privileged functions, change the call site to

a wrapper function which marshals the args on slave
side and sends them to Master’s stub

– Similar stubs on returns for unprivileged return values

15

Privilege Separation at Runtime

Slave

Main
Execution

W
rapper

Master

W
rapper

Privileged
Server

State
Store

Policy

RPC
Request

RPC
Reply

16

Summary: Privilege Separation
• Only master is privileged, usually much smaller
• Slave is unprivileged
• Bug in slave cannot harm master, cannot gain

privilege
• How to protect master from a compromised

slave?
– Fault isolation

17

Fault Isolation
• Fault Isolation

– The fault in one program or one part of the code cannot
harm other programs or other parts of the code

– Very important for security in running untrusted or
untrustworthy code

– “Harmness”
» E.g., read/write memory it’s not supposed to

• Hardware fault isolation
– Processes
– What properties/protection does process provide?

» Memory protection
» Other resources such as file handles are separated as well

– Works well for some applications

18

Disadvantage of Hardware Fault Isolation

• Process inter communication is expensive
– Add significant performance overhead if often

• Why is process inter communication expensive?
– Trap from user to kernel back to user
– Context switch is expensive

» Flush TLB, cache miss, etc.
– Often 2-3 orders of magnitude more expensive than

normal procedure call

19

How to Address This?
• Software Fault Isolation (SFI)
• Question:

how to protect a piece of code from harming
other parts of the program even though they run
in the same address space?

20

Administravia
• Hw5 is out

21

Motivation
• Today’s systems are designed to be extensible

– OS kernel module/drivers
– Browser plug-ins

• Extension accounts for over x% of Linux kernel
code

– x=70 [Chou et. al.]
• Windows XP desktops

– Over 35,000 drivers with over 120,000 versions [Swift
et. al.]

• Drivers cause 85% of reported failures in
Windows XP [Swift et. al.]

22

Desired Properties of Extensible Architecture

• Efficiency
• Security model: extension code may be

– Malicious
– Buggy

• Protection
– Extension should not read and/or write to certain

regions in host Isolation, sandbox
» Do no harm to others
» Why do we care about Read?

– Other more sophisticated security policies
– Need more efficient mechanisms than hardware fault

isolation

23

Software Fault Isolation
• Idea: insert code in extension code to ensure

certain security properties
• SFI [Wahbe et. al. 93]

– Software fault isolation
– Security property to guarantee:

Extension code only writes and jumps to dedicated
data and code region

– How to ensure this?

