Privilege Separation and Isolation

Dawn Song
dawnsong@cs.berkeley.edu

The Story Continues...

» Programs have bugs and may not find all the
bugs ahead of time

* What can we do?
—Build security mechanisms to minimize damage

* Examples
—Priviledge separation to prevent priviledge escalation

—Isolation to protect other parts of the program and
other programs

—Sandboxing to limit the damage it does to the system
—General concept: reference monitor

Privileged Programs

* Privilege management is coarse-grained in
today’s OS

—Root can do anything
* Many programs run as root

—Even though they only need to perform a small
number of priviledged operations

* What's the problem?
—Privileged programs are juicy targets for attackers

—By finding a bug in parts of the program that do not
need privilege, attacker can gain root

What Can We Do?

« Drop privilege as soon as possible

* Ex: anetwork daemon only needs privilege to
bind to low port # (<1024) at the beginning

—Solution?
—Drop privilege right after binding the port

* What benefit do we gain?
—Even if attacker finds a bug in later part of the code,

can’t gain privilege any more
* How to drop privilege?

Unix file security

« Each file has owner and group
* Permissions set by owner

—Read, write, execute setid
—Owner, group, other }
—Represented by vector of WX, WX WX

four octal values ownr grp othr
* Only owner, root can change permissions
—This privilege cannot be delegated or shared
 Setid bits
—Talk about this in a sec

John Mitchel

Effective user id (EUID)

» Each process has three Ids
—Real user ID (RUID)
» same as the user ID of parent (unless changed)
» used to determine which user started the process
— Effective user ID (EUID)
» from set user ID bit on the file being executed, or sys call

» determines the permissions for process
« file access and port binding

—Saved user ID (SUID)
» So previous EUID can be restored

* Real group ID, effective group ID, used similarly

John Mitchel

Process Operations and IDs

¢ Root

— ID=0 for superuser root; can access any file
* Fork and Exec

— Inherit three IDs, except exec of file with setuid bit
« Setuid system calls

— seteuid(newid) can set EUID to

» Real ID or saved ID, regardless of current EUID
» Any ID, if EUID=0

* Why do we need to save previous EUID?
« Details are actually more complicated

— Several different calls: setuid, seteuid, setreuid

John Mitchel

Setid bits on executable Unix file

e Three setid bits
—Setuid — set EUID of process to ID of file owner
—Setgid — set EGID of process to GID of file
— Sticky

» Off: if user has write permission on directory, can
rename or remove files, even if not owner

» On: only file owner, directory owner, and root can
rename or remove file in the directory

John Mitchel

Example

RUID 25

read/write | RUID 25
EUID 18
i=getruid(|
setuid(i);

read/write [RUID 25

EUID 25

John Mitchel

Setuid programming

» Be Careful!
—Root can do anything; don’ t get tricked

—Principle of least privilege — change EUID
when root privileges no longer needed

e Setuid scripts
—This is abad idea

—Historically, race conditions

» Begin executing setuid program; change contents of
program before it loads and is executed

10
John Mitchel

What Happens if you can’t drop privilege?

e In what example scenarios does this happen?
—A service loop
-E.g., ssh
» Solution?
—Privilege separation
—Identifying operations that need privileges

—Separate original code into master (priviledged) and
slave (unprivileged)

Privilege Separation

Process:
—Step 1: Identify which operations require privilege
—Step 2: rewrite programs into 2 or more parts

Approach:
—Manual
» Have been done on security-critical programs, e.g., ssh
» Labor-intensive and may miss privileged operations
—Automatic

» Automatic inference of privileged operations using a few initial
annotations
» Automatic source-to-source rewriting
« Privileged code move into master
« Unprivileged code move into slave
« Stubs for inter communication

Automatic Privilege Separation

» Step 1: automatic inference of privileged data
and operations
—Given some initial annotations of privileged data
and/or operations, infer what other data/operations
are privileged
—Idea: can be viewed as a form of static taint analysis
—Approach:
» Define qualifier _priv_and _unpriv_
» Operations on _priv_ results in _priv_

int _priv_a;
Int _priv_ f(); X
int b = f(a); —priv_b
c=c+b; _priv_c
g(c); _priv_g
13

Automatic Privilege Separation

» Step 2: automatic source-to-source
transformation
—Move privileged data and code to Master

—For call to privileged functions, change the call site to
awrapper function which marshals the args on slave
side and sends them to Master’s stub

—Similar stubs on returns for unprivileged return values

Privilege Separation at Runtime

Slave Master
State
RPC Store
_E‘ Request E
Main 2177 T2 [Privileged
Execution (B[~~~ T[g| Server
= RPC =
Reply

Summary: Privilege Separation

» Only master is privileged, usually much smaller
 Slave is unprivileged
* Bug in slave cannot harm master, cannot gain
privilege
* How to protect master from a compromised
slave?
—Fault isolation

Fault Isolation

* Fault Isolation

—The fault in one program or one part of the code cannot
harm other programs or other parts of the code

—Very important for security in running untrusted or
untrustworthy code

—“Harmness”

» E.g., read/write memory it's not supposed to
» Hardware fault isolation

—Processes

—What properties/protection does process provide?
» Memory protection
» Other resources such as file handles are separated as well

—Works well for some applications

Disadvantage of Hardware Fault Isolation

* Process inter communication is expensive
—Add significant performance overhead if often

* Why is process inter communication expensive?
—Trap from user to kernel back to user

— Context switch is expensive
» Flush TLB, cache miss, etc.

—Often 2-3 orders of magnitude more expensive than
normal procedure call

How to Address This?

« Software Fault Isolation (SFI)

e Question:
how to protect a piece of code from harming
other parts of the program even though they run
in the same address space?

Administravia

« Hw5 is out

Motivation

Today'’s systems are designed to be extensible
—OS kernel module/drivers
—Browser plug-ins

Extension accounts for over x% of Linux kernel
code

—Xx=70[Chou et. al.]
Windows XP desktops

- Ove1]35,000 drivers with over 120,000 versions [Swift
et.al.

Drivers cause 85% of ref)orted failures in
Windows XP [Swift et. al.]

Desired Properties of Extensible Architecture

« Efficiency

» Security model: extension code may be
—Malicious
—Buggy

» Protection

—Extension should not read and/or write to certain
regions in host € Isolation, sandbox
» Do no harm to others
» Why do we care about Read?
— Other more sophisticated security policies

—Need more efficient mechanisms than hardware fault
isolation

Software Fault Isolation

 Idea: insert code in extension code to ensure
certain security properties
* SFI [Wahbe et. al. 93]
— Software fault isolation

—Security property to guarantee:
Extension code only writes and jumps to dedicated
data and code region

—How to ensure this?

