
1

Sandboxing

Dawn Song
dawnsong@cs.berkeley.edu

2

Review
• Preventing privilege escalation

– Drop privileges asap
– Privilege separation

• Isolation
– Hardware fault isolation
– Software fault isolation

3

Software Fault Isolation
• Idea: insert code in extension code to ensure 

certain security properties
• SFI [Wahbe et. al. 93]

– Software fault isolation
– Security property to guarantee:

Extension code only writes and jumps to dedicated 
data and code region

– How to ensure this?



4

Segments
• Divide application’s virtual address space into 

segments
– With upper bits the same: segment identifier

• A fault domain has two segments
– Code segments
– Data segments

• Security property to ensure
– Distrusted code only jumps to its code segment, only 

writes to its data segment

5

Idea
• Before every write and jump, insert code to 

check whether the target is within the dedicated 
region

• Optimization: 
– instead of checking, simply sets the high-order bits 

to be segment identifier
• Where to store the value of the masks?

– Dedicated registers
• How to prevent jumping over the inserted check 

code?
– Use dedicated registers

6

Sandboxing Untrusted Store

• Sequence of instructions for each untrusted 
store

• Untrusted jump instruction handled similarly

dedicated-reg <= target-reg & and-mask-reg
dedicated-reg <= dedicated-reg | segment-reg
store instruction uses dedicated-reg 



7

Why Use Dedicated Register?
• How many dedicated register required?

• Why?

• What happens is untrusted code jumps to 
the middle of the sequence?

8

Instrumentation and Verification
• Instrumentation

– Modify gcc compiler to emit encapsulated object code
• Verification

– Verify when module is loaded
– Why verification?

» Module is untrusted
» Verifier can be much simpler than the instrumentor

– How to verify?

9

SFI Summary
• Security property ensured: 

Distrusted code only jumps to its code segment, 
only writes to its data segment

• Tradeoff btw computation overhead & 
communication overhead

• More information:
– Efficient Software-based Fault Isolation, by Robert 

Wahbe, Steven Lucco, Thomas Anderson, Susan 
Graham



10

Generalization: In-line Reference Monitor

• In-line reference monitors/dynamic checks
– IRMs enforce security policies by inserting into subject 

programs the code for validity checks and also any 
additional state that is needed for enforcement

• Idea
– Add dynamic checks to enforce properties at run time
– Combine with static analysis to reduce dynamic checks
– Ensure dynamic checks are not by-passed

» Control & data property enforcements are intertwined
– Verifier:

» Ensure dynamic checks are properly inlined

11

A Whole Spectrum
• Tradeoff

– Complexity of properties enforced
– Runtime overhead
– Assumptions required
– Complexity of priori analysis needed

• Properties enforced entail
– What dynamic checks to add
– How to add these dynamic checks

• The spectrum
– SFI, CFI, DFI, XFI, …
– Interpreter/emulator is one end of the spectrum

12

Move to a different level
• System call interposition for application 

sandboxing



13

Administravia
• HW4 Stats:

– Max 75 (out of 75)
– Mean 54, s.d. 20
– Median 61

14

System Call Interposition
• Malicious programs usually need to make system 

calls to do harm to the system
• System call interface is a natual place to place 

security checks & enforce security policies
• What kind of policies do we want to enforce?

– A process cannot open certain files
– A process may have restricted network access
– A process may not send network packets after reading 

certain files

15

How to Get the Policy
• Manually define policy

• Learning policy from past good executions
– Sequence of system calls

• Extracting policy from the program
– Push-down automata, etc.



16

How to Enforce a Policy?

• Intercept system calls
• Information passed on to policy checker before system 

call is processed
• Policy checker

– In kernel
– User space

Application

System call

Policy checker

Policy checker

OS

17

Evasion Attacks
• Be careful with race conditions (TOCTTOU)

• Mimicry attacks
– Given sequences of allowed system calls
– One could potentially find a sequence of system calls 

that performs malicious tasks and yet fly under the 
radar

18

Evasion Attacks

• wuftpd



19

How to Protect Policy Checker?
• In different user process or in kernel

• Relying on the trust to kernel

• Can we do better?

20

Virtual Machine Monitors
• Virtual machine: execution envrionment 

that gives the illusion of a real machine
• VMM 

– sits below OS
– Much smaller than OS, easier to verify/get right
– Natual place to enforce security policies
– Policy checker does not need to rely on OS


