Sandboxing

Dawn Song
dawnsong@cs.berkeley.edu

Review

* Preventing privilege escalation
—Drop privileges asap
— Privilege separation
Isolation
—Hardware fault isolation
— Software fault isolation

Software Fault Isolation

« |dea: insert code in extension code to ensure
certain security properties
* SFI [Wahbe et. al. 93]
— Software fault isolation

— Security property to guarantee:
Extension code only writes and jumps to dedicated
data and code region

—How to ensure this?

Segments

« Divide application’s virtual address space into
segments

—With upper bits the same: segment identifier
« A fault domain has two segments

—Code segments

—Data segments
e Security property to ensure

—Distrusted code only jumps to its code segment, only
writes to its data segment

Idea

- Before every write and jump, insert code to
check whether the target is within the dedicated
region

* Optimization:

—instead of checking, simply sets the high-order bits
to be segment identifier

* Where to store the value of the masks?
—Dedicated registers

* How to prevent jumping over the inserted check
code?

—Use dedicated registers

Sandboxing Untrusted Store

dedicated-reg <= target-reg & and-mask-reg
dedicated-reg <= dedicated-reg | segment-reg
store instruction uses dedicated-reg

» Sequence of instructions for each untrusted
store

e Untrusted jump instruction handled similarly

Why Use Dedicated Register?

* How many dedicated register required?
* Why?

* What happens is untrusted code jumps to
the middle of the sequence?

Instrumentation and Verification

 Instrumentation
—Modify gcc compiler to emit encapsulated object code
 Verification
—Verify when module is loaded
—Why verification?
» Module is untrusted
» Verifier can be much simpler than the instrumentor
—How to verify?

SFI Summary

e Security property ensured:
Distrusted code only jumps to its code segment,
only writes to its data segment

» Tradeoff btw computation overhead &
communication overhead
e More information:

— Efficient Software-based Fault Isolation, by Robert
Wahbe, Steven Lucco, Thomas Anderson, Susan
Graham

Generalization: In-line Reference Monitor

¢ In-line reference monitors/dynamic checks

—IRMs enforce security policies by inserting into subject
programs the code for validity checks and also any
additional state that is needed for enforcement

* ldea
—Add dynamic checks to enforce properties at run time
—Combine with static analysis to reduce dynamic checks
—Ensure dynamic checks are not by-passed
» Control & data property enforcements are intertwined
— Verifier:
» Ensure dynamic checks are properly inlined

A Whole Spectrum

* Tradeoff
— Complexity of properties enforced
— Runtime overhead
— Assumptions required
— Complexity of priori analysis needed

* Properties enforced entail
— What dynamic checks to add
— How to add these dynamic checks

e The spectrum
— SFI, CFl, DFI, XFI, ...
— Interpreter/emulator is one end of the spectrum

Move to a different level

» System call interposition for application
sandboxing

Administravia

« HW4 Stats:
—Max 75 (out of 75)
—Mean 54, s.d. 20
—Median 61

System Call Interposition

» Malicious programs usually need to make system
calls to do harm to the system
» System call interface is a natual place to place
security checks & enforce security policies
* What kind of policies do we want to enforce?
—A process cannot open certain files
—A process may have restricted network access

—A process may not send network packets after reading
certain files

How to Get the Policy

e Manually define policy

e Learning policy from past good executions
—Sequence of system calls

* Extracting policy from the program
—Push-down automata, etc.

How to Enforce a Policy?

Application fpolicy checker-:
[¢ :
System call | |

< Intercept system calls

« Information passed on to policy checker before system
call is processed
* Policy checker
— In kernel
— User space

Evasion Attacks

* Be careful with race conditions (TOCTTOU)

e Mimicry attacks
—Given sequences of allowed system calls

—One could potentially find a sequence of system calls
that performs malicious tasks and yet fly under the
radar

Evasion Attacks

read() write() close() mummap() sigprocmask() waité()
sigprocmesk() sigaction() alarm() tims() stat() read()
alarn() sigprocmask() setrewid() fstat() getpid()
time() write() Time() getpid() sigaction() sockstcall ()
sigaction() close() flock() getpid() lsesk() read()
Ki1lQ) lseek() flock() sigactien() alarm() time()
stat() write() open() fstat() mmap() zead() opsn()
fstat() muap() read() close() mummap() brk() femtl()
setregid() open() fomtl() chroot?) chdir() setreuid()
1stat() lstat() lstat() 1lstat() opem() fcntl() fstat()
lseek() getdents() fontl() fstat() lseek() getdents()
close() write() time() opea() fstat() mmap() read()
close() munmap() brk() fentl() setregid() open() fensl()
chroat() chdir() setrenid() lstat() lstat() lstat()
1stat() gpen() femtl() brk() fstat() lsesk() getdents()
1seek() getdents() time() stat() grite() time() opsn()
getpid() sigaction() socketcall() sigactien() umask()
sigaction() alarm() time() stat() read() alam()
getrlimit() pipe() fork() fentl() fstat() mmap() lseek()
close() brk() time() getpid() sigaction() socksteall ()
sigaction() chdir() sigaction() sigacticn() write()
. Wuftpd mannap () mumap() oummap() ezit ()

How to Protect Policy Checker?

« In different user process or in kernel
* Relying on the trust to kernel

e Can we do better?

Virtual Machine Monitors

 Virtual machine: execution envrionment
that gives the illusion of a real machine
« VMM
—sits below OS
—Much smaller than OS, easier to verify/get right
—Natual place to enforce security policies
—Policy checker does not need to rely on OS

