Firewall & Network-based Intrusion Detection

Dawn Song
dawnsong@cs.berkeley.edu

Review

* Reference Monitor
— Software Fault Isolation
— System call interposition

How to Protect Policy Checker?

« In different user process or in kernel
* Relying on the trust to kernel

e Can we do better?

Virtual Machine Monitors

« Virtual machine: execution envrionment
that gives the illusion of a real machine

* VMM
—sits below OS
—Much smaller than OS, easier to verify/get right
—Natual place to enforce security policies
—Policy checker does not need to rely on OS

* Examples
—VMWare
—Xen

Virtual Machine Introspection based
Policy Enforcement

Monitored est

Command Guast Appa

= 0% frbarfecs Library
Virtual Machine

colbcx o
Hu.-m-.p-.tur.-T Fusoras
1

Virtual Mashine Manfear

Sample Security Policies

Enforce memory access

Enforce NIC access: e.g., prevent promiscuous
mode

Raw socket detector
Signature detector
Program integrity checker
Lie detector for rootkits

Summary of VMM-based Enforcement

* VMM is much smaller, easier for correctness
» See entire system state, powerful policies
e Much higher performance overhead

Moving to yet another level

¢ Inline reference monitor

« System call interposition

* VMM introspection

* Can we move it to yet another level?

Network-level Security Policy Enforcement

e Firewalls
—Peremiter defense
—Btw internet & intranet
—Block traffic violating security policy

—Central chokepoint uses single place to easily
enforce a security policy on 1,000's of machines

» Similar to airport security — few entrances

' Intern;xl
Internet —E Network

Packet Filters
Simplest kind of firewall is a packet filter
—Router with list of access control rules
—Router checks each received packet against security
rules to decide to forward or drop it
—Each rule specifies which packets it applies to based
on a packet’s header fields

» Specify source and destination IP addrs, port
numbers, and protocol names, or wild cards

» Each rule also specifies an action for matching packets:
ALLOW or DROP

» <ACTION> <PRTCL> <SRC:PT> -> <DEST:PT>
—List of rules is examined one-by-one
» First matching rule determines how packet will be handled

Security Policy based on IP Header

* A TCP service is specified by machine’s IP
address and TCP port number on it

—Web server ww.cs.berkeley.edu at
169.229.60.105, port 80

—Mail service at 169.229_60.93, port 25
—UDP services similarly identified

* |dentify each svc with triplet (m,r,p):
—m is machine’s IP addr (A.B.C.D/[MASK])
—ris a TCP/UDP protocol identifier
—p is the port number

—Example: official web servers on subnet 1.2.3.x -
>add(1.2.3.0/24, TCP, 80) to allowed list

Example Ruleset

e What does this ruleset do?
—drop tcp *:* -> *:23
—allow * *:* > *:*

e Answer:

—Blocks all TCP pkts destined to port 23 (telnet)
» Telnet uses cleartext passwords!

—Forwards all other traffic
e Problems?
* No notion of a connection, or of inbound vs
outbound connections
—Drops outbound telnet connections from inside users
—This is a default-allow policy!!

Another Example

* Want to allow:

—Inbound mail connections to our mail server
(1.2.3.4:25)

—All outbound connections
—Nothing else

—Consider this ruleset:
»allow tcp *:* -> 1.2.3.4:25
» allow tcp {int_hosts}:* -> *:*
» drop *ookrk > kok

» This policy doesn't work...
—TCP connections are bidirectional

—3-way handshake: send SYN, receive SYN|ACK, send
ACK, send DATA w/ACK bit

Problem: Outbound Connections Fail

* Inside host opens TCP connection to port 80
on external machine:
—Initial SYN packet passed through by rule 2
—SYN|ACK packet coming back is dropped
» Fails rule 1 (not destined for port 25)
» Fails rule 2 (source not inside host)
» Matches rule 3 -> DROP
« Distinguish between 2 kinds of inbound pkts

—Allow inbound packets associated with an
outbound connection to pass

—Restrict inbound packets associated with an
inbound connection

Inbound versus Outbound Connections

» Key idea: use a feature of TCP!
—ACK bit set on all packets except first one

—Recipients discard any TCP packet with ACK bit set, if
packet is not associated with an existing TCP
connection

e Solution ruleset?

—allow tcp *:* -> 1.2.3.4:25

—allow tcp {int_hosts}:* -> *:*

—allow tcp *:* -> {int_hosts}:* (if ACK bit set)

—drop * *I* > *:*

—Rules 1 and 3 allow inbound connections to port 25 on
machine1.2.3.4

—Rules 2 and 3 allow outbound connections to any port

15

Example Using This Ruleset

» Outside attacker trying to exploit finger service
(TCP port 79) vulnerability

—Tries to open an inbound TCP connection to our finger
server

» Attempt #1:Sends SYN pkt to int. machine
—Pkt doesn’t have ACK bit set, so fw rule drops it
» Attempt #2: Sends SYN|ACK pkt to internal
machine
—FW permits pkt, then dropped by TCP stack (ACK bit
set but isn’t part of existing connection)
» We can specify policies restricting inbound
connections arbitrarily

IP Spoofing: Another Security Hole

 IP protocol doesn’t prevent attacker from
sending pkt with wrong (spoofed) src addr
—Most routers ignore src addrs

* Suppose 1.2.3.7 is an internal host

— Attacker sends spoofed TCP SYN packet

» Src addr 1.2.3.7, dest addr target internal machine, dest
port 79 —rule 2 allows

—Target replies with SYNJACK pktto 1.2.3.7 and
waits for ACK (to finish 3-way handshake)

— Attacker sends spoofed TCP ACK packet

— Attacker then sends data packet

Attack Analysis

» Attack allows connections to internal hosts
—Violates of our security policy
—Allows attacker to exploit any security holes
» Ex: finger service vulnerability
— Caveat:

» Attacker has to “guess” Initial Sequence Number set by
target in SYN|ACK packet sentto 1.2.3.7 (many ways
to guess...)

* Modified Solution
—Packet filter marks each packet with incoming
interface ID, and rules match IDs

» Recall: Router has 2+ interfaces, forwards packets from
one to another

New Solution

* New ruleset

—Int. interface: in, ext. interface: out

—allow tcp *:*/out -> 1.2.3.4:25/in

—allow tcp *:*/in -> *:*/out

—allow tcp *:*/out -> *:*/in (if ACK bit set)

—drop * *:o* -> *r*

—Allows inbound packets only if destined to 1.2.3.4:25
(rule 1), or, if ACK bit set (rule 3)

—Drops all other inbound packets

» Clean solution: defeats IP spoofing threat

—Simplifies ruleset admin (no hardcode internal hosts
list)

Other Kinds of Firewalls

Packet filters are quite crude firewalls
—Network level using TCP, UDP, and IP headers
» Alternative: examine data field contents

—Application-layer firewalls (application firewalls)

» Can enforce more restrictive security policies and transform
data on the fly

* For more information on firewalls, read:

—Cheswick, Bellovin, and Rubin: Firewalls and Internet
Security: Repelling the Wily Hacker.

Packet filtering sw available for many OS’s:

—Linux iptables, OpenBSD/FreeBSD PF, and
Windows XP SP2 firewall

Administravia

* Expect emails soon from John regarding
milestone #2 feedback

* Most groups did well
* Need to follow interface specs

Firewall vs. NIDS

* Firewall
—Active filtering
—Fail-close

* Network IDS
—Passive monitoring

—Fail-open NIDS
@

Network-based Intrusion Detection

Often stateful, deep-packet inspection
— Full stream re-assembly
Examples
— Snort
— Bro
— Commercial appliances
Detection methods
— Misuse detection (signature-based)
» E.g., snort rules
— anomaly detection (specification-based or statistical-based)
» E.g., port-scanning detection
Often much more complex than packet filters

Attacks on NIDS

« Algorithmic complexity attacks
« Evasion attacks
e Stealthy port scanning

Algorithmic Complexity Attacks

« DoS attacks not only serious for denying service, but
can be more severe by using it as a component of an
attack

DoS attack on IDS enables other attacks to remain
undetected

“Denial of Service via Algorithmic Complexity Attacks”
by Crosby and Wallach

Complexity Attack on Hash Table

* On average, a hash table has O(n) overhead to
insert n elements

 In the worst case, a hash table may have O(nz)
overhead to insert n elements!

« Attack against Perl hash table:

—90K inserts
» Random: <2 sec
» Worse case: > 6500 sec

Complexity Attack Against Bro

» Bro uses simple xor to “hash” values for hash table
— Easy to find collisions!
« Example: Bro port scanning detector keeps a hash table of
dst IP addresses
— Keep the list of dst IP addresses for each <src IP, dst port>
» Using source IP spoofing, can exploit this structure to
perform DoS attack!

Attack | Random
Total CPU time | 44,50 min | .86 min
Hash table time | 43.78 min | .02 min

NIDS: Evasion & Normalization

* Problems
—Complete fragment reassembly necessary to detect
certain attacks
—NIDS only has partial knowledge of what traffic the
host sees (e.g., TTL expires, MTU)

—Ambiguities in TCP/IP (e.g., Overlapping IP & TCP
fragments)
» Different OS implement standard differently

Small TTL Attack

NIDS sees:

NaEnkEE

Attacker’s data stream End-host sees:
(Al [A][C][K] [A][T][T[A][c][K]
——

same TCP seq #, “I" has short TTL

Fragmentation Overlap Attack

NIDS sees:

AEHEXMOEK
Internet { Host

Attacker’s data stream End-host sees:
128 i 2 [3 e A e [[R [)45
——

same TCP seq #
or same IP frag offset ©

Solution: Traffic Normalizer

 Introduce “bump in the wire”: traffic normalizer to
evade protocol ambiguities
— Drop overlapping IP/TCP fragments
— Increase TTL in packets with low TTL

Normalizer

* Other approaches
— Host-based IDS
— Detailed Intranet map

Stealth Port Scanning

« IPid field used for Aacker Pot Victim
stealth port scanning

HEchoroquagt |

1 HEehoraquast o)

41 rEeho-raquagt |

FFCRSYN seaP dstport=dd | o fiskener

¥

an pe

lab———==—= KST ceners
— Fechorequest | TEP AT | AT seneriated

+1—E&ho.mq1..|.asl__-

Bistener
exists o port 25
SIN-ACK geverated

Principle: Reference Monitor

» SFI, System call interposition, VMM introspection,
Firewall/NIDS: one thing in common

* One enforcement mechanism: reference monitor

—Examines every request to access any controlled
resource (an object) and determines whether to allow
request

Request

Reference
Monitor

Reference Monitor Security Properties

« Always invoked

—Complete mediation property: all security-relevant
operations must be mediated by RM

—RM should be invoked on every operation controlled by
access control policy
e Tamper-resistant
—Maintain RM integrity (no code/state tampering)
« Verifiable

—Can verify RM correctness (correctly enforces desired
access control policy)
» Requires extremely simple RM

» Can’t verify correctness for systems with any appreciable
degree of complexity

Conclusion

* VMM introspection
e Firewall/NIDS
» Reference monitor
—Fundamental security concept
—Apply at different levels
—Enforce security policies & limit damage on attacks

