Defensive Programming

Dawn Song
dawnsong@cs.berkeley.edu

Review

+ Attackers will exploit any and all flaws!

— Buffer overruns, format string usage errors, implicit
casting, TOCTTOU, ...

* Trusted Computing Base (TCB)

— System portion(s) that must operate correctly for
system security goals to be assured

Goals for Today

* Three principles in crypto design
— Conservative Design, Kerkhoff’s Principle,
Proactively Study Attacks
* Principles for building secure systems
—13 other principles

— Principles are neither necessary nor sufficient to
ensure a secure system design, but they are often
very helpful

—Goal is to explore what you can do at design time to
improve security




Three Principles in Crypto Design

» Three principles widely accepted in crypto
community that seem useful in computer security

—Conservative Design
— Kerkhoff’s Principle
—Proactively Study Attacks

1. Conservative Design

« Systems should be evaluated according to
worst plausible security failure, under
assumptions favorable to attacker

If you find such circumstance where the
system can be rendered insecure, then
you should seek a more secure system

2. Kerkhoff's Principle

Cryptosystems should remain secure
even when the attacker knows all internal
details of the system

The key should be the only thing that
must be kept secret

If your secrets are leaked, it is a lot easier
to change the key than to change the
algorithm




3. Proactively Study Attacks
» We must devote considerable effort to trying
to break our own systems
—How we can gain confidence in their security
+ Other reasons:
—In security game, attacker gets last move
—Very costly if a security hole is discovered after
wide system deployment
» Pays to try to identify attacks before bad
guys find them

—Gives us lead time to close security holes before
they are exploited in the wild

Principles for Secure Systems

* General principles for secure system design

— Many drawn from a classic 1970s paper by Saltzer and
Schroeder

» 1. Security is Economics
—No system is 100% secure against all attacks
» Only need to resist a certain level of attack
» No point buying a $10K firewall to protect $1K worth of
trade secrets
— Often helpful to quantify level of effort an attacker
would expend to break the system.
— Adi Shamir once wrote, “There are no secure
systems, only degrees of insecurity”

» A lot of the science of computer security comes in
measuring the degree of insecurity

Economics Analogy
» Safes come with a security level rating

» Consumer-grade safe:

— Rated to resist attack for up to 5 minutes by
anyone without tools

» High-end safe might be rated TL-30

— Secure against burglar with safecracking tools
and less than 30 minutes access

—We can hire security guards with a less than 30
minute response time to any intrusion




Corollary of This Principle

* Focus your energy on securing weakest links
— Security is like a chain: it is only as secure as the
weakest link
— Attackers follow the path of least resistance, and will
attack system at its weakest point
* No point in putting an expensive high-end
deadbolt on a screen door

— Attacker isn’t going to bother trying to pick the lock
when he can just rip out the screen and step through!

2. Least Privilege
* Minimize how much privilege you give each
program and system component
—Only give a program the minimum access
privileges it legitimately needs to do its job
« Least privilege is a powerful approach
—Doesn’t reduce failure probability, but can reduce
expected cost of failures
* Less privilege a program has, less harm it
can do if it goes awry or runs amok
— Computer-age version of shipbuilder’s notion of
“watertight compartments”:

» Even if one compartment is breached, we minimize
damage to rest of system’s integrity

Principle of Least Privilege Examples

» Can help reduce damage caused by buffer
overruns or other program vulnerabilities

—Intruder gains all the program’s privileges

—Fewer privileges a program has, less harm done if
it is compromised

* How is Unix in terms of least privilege?
—Answer: Pretty lousy!
—Program gets all privileges of invoking users
—1 edit a file and editor receives all my user
account’s privileges (read, modify, delete)
« Strictly speaking editor only needs access to
file being edited to get job done




Principle of Least Privilege Examples

* How is Windows in terms of least privilege?

—Answer: Just as lousy!

—Arguably worse, as many users run as
Administrator and many Windows programs
require Administrator access to run

» Every program receives total power over the
whole computer!!
* Microsoft’s security team recognizes this risk

—Advice: Use limited privilege account and “Run
As...”

3. Use Fail-Safe Defaults

» Use default-deny polices
— Start by denying all access, then allow only
that which has been explicitly permitted
* Ensures that if security mechanisms fail
or crash, default will be secure behavior

« Example: Packet filter is a router
— Failure means no packets will be routed
» Fail-safe behavior
— Fail-open behavior much more dangerous

» Attacker just waits for packet filter to crash (or
induces crash) and then the fort is wide open!

Non-Fail-Safe Defaults Examples

* SunOS machines used to ship with + in
/etc/hosts.equiv file

— Allowed anyone with root access on any
machine on the Internet to log into your
machine as root

* Irix machines used to ship with xhost +
in their X Windows configuration files
— Allowed anyone to connect to Xserver




4. Separation of Responsibility

 Split up privilege
—No one person or program has complete power
—Require more than one party to approve before access
is granted
» Two-party rule examples

—Movie theater: pay teller and get ticket stub, then
separate employee tears ticket in half, collects a half of
it and puts it in lockbox

» Helps prevent insider fraud (under-/over-charge)

—Most companies: purchases over certain amount must
be approved by both requesting employee and a
purchasing officer

» Helps prevent insider fraud in vendor choice

5. Defense in Depth

* A closely related principle

—“You can recognize a security guru
because they’re wearing both a belt and
a set of suspenders”

* Principle is that with multiple
redundant protections, all of them
have to be breached to endanger
system security




6. Psychological Acceptability
* Important that users buy into security model
* Examples
— Company FW admin capriciously blocks apps that
engineers need to get their jobs done
» They view FW as damage and tunnel around it
—Sys admin makes all passwords auto-generated long
unmemorizable strings changed monthly

» Users simply write down their passwords on yellow post-its
attached to their screens

* No system can remain secure for long when all
its users actively seek to subvert it
—Sys admins aren’t going to win this game...

—Well-intentioned edicts can ultimately turn out to be
counter-productive

7. Usability

» Security systems must be usable by ordinary
people and take into account humans’ role
* Example
—Web browser pops up security warnings, but no
indication of steps you should take
» What do you do? Like everyone else click “OK”...
—NSA’s crypto equipment stores key material on small
physical token shaped like ordinary key

» To activate encryption device, insert key into device’s slot
and turn it

» Intuitively understandable interface, even for 18-year-olds
soldiers with minimal training

8. Ensure Complete Mediation

* When enforcing access control policies,
ensure that every access to every object
is checked

+ Caching is a slightly sticky subject
— Can sometimes avoid checking every access
and allowing security decisions to be cached,
but beware
* What if context relevant to security
decision changes, and cache entry isn’t
invalidated?

—Someone might get away with accessing
something they shouldn’t




9. Least Common Mechanism

» Be careful with shared code!.
— Original assumptions may no longer be valid
—Threat model may have changed
* Example: Internet users were once only
researchers, who trusted each other

—Most networking protocols designed during
those days assumed that all other network
participants were benign and non-malicious

—Not true today! Millions of users, many
malicious ones...

—Many old network protocols are suffering
under the strain of attack (e.g., spam)

10. Detect if You Can’t Prevent

« If you can’t prevent break-ins, at least
detect them and provide a way to identify
the perpetrator

* Forensics are important
—Keep audit logs so you can analyze break-ins
afterwards
« Example: FIPS 140-1 federal standard for
tamper-resistant hardware
—Type lll devices (highest level) are very
expensive
—Type Il devices are only required to be tamper-
evident (e.g., a visibly broken seal)
» Lower cost and usable in broad set of apps

11. Orthogonal Security

» Security mechanisms implemented
orthogonally (transparently) to rest of
system are useful in protecting legacy
systems

» Also, allow us to improve assurance by
composing multiple mechanisms in series




12. Don’t Rely on Security Through Obscurity

» We’ve seen this one in the last lecture...

* ‘Security through obscurity’ phrase
— Systems that rely on secrecy of design,
algorithms, or source code to be secure
+ Claimed reasoning:

—“This system is so obscure, only 100 people
understand anything about it, so what are the
odds that adversaries will bother attacking it?”

+ Self-defeating approach

— As system becomes more popular, more
incentive to attack it, and cannot rely on its
obscurity to keep attackers away...

Secret Designs

* Very hard to keep system design secret from a
dedicated adversary

—Every running installation has binary executable
code that can be disassembled

—Hard to assess chances that secret will leak or
difficulty of learning the secret

* If secret ever leaks, can be hard to update
widely-deployed systems
—No recourse if someone ever succeeds
 History has a lousy track record

—Many systems that have relied upon code or design
secrecy for security have failed miserably

13. Design Security in, From the Start

» Often doesn’t work to retrofit security into an
existing implemented application
— Stuck with chosen architecture

—Can’t change system decomposition to ensure
any of the good principles we discussed

» Backwards compatibility often particularly
painful, because you have to support worst
insecurities of all previous versions




Administrivia

Writing Secure Code

» Goal is eliminating all security-relevant
bugs, no matter how unlikely they are to
be triggered in normal execution

—Intelligent adversary will find abnormal ways
to interact with our code

« Different goal from software reliability
—Focus is on most likely to happen bugs
— Can ignore obscure condition bugs

+ Dealing with malice is much harder than
dealing with mischance

Three Fundamental Techniques

* (1) Modularity and decomposition for security
* (2) Formal reasoning about code using invariants
* (3) Defensive programming

* In the next lecture, we’ll discuss programming
language-specific issues and integrating security
into the software lifecycle




Modularity
* Decompose well-designed system into modules
— All interactions through well-defined interfaces
— Each module performs a clear function
» “What functionality it provides” not “how it is implemented”
* Granularity depends on system and language
— A module typically has state and code

—In Java (object-oriented), a class (or a few closely
related classes)

—In C, its own file with a clear external interface, along
with many internal functions that are not externally
visible or callable

Module Design

* Focus on interface design
—Interface is the caller-callee contract
—Should change less often than implementation
— Caller only needs to understand interface
—Should interact only through defined interface

» No global variables for communication

* A module is a blob
—The interface is its surface area
—The implementation is its volume

—Thoughtful design has narrow and conceptually
clean interfaces and modules have low surface area
to volume ratio

Module Decomposition Suggestions

* Minimize the harm caused by module failure
— Contain damage from module penetration (buffer
overrun) or unexpected behavior (implementation bug)
» Draw a security perimeter around each module
—Keep one misbehaving module from changing other
modules’ behaviors
* Plan for failure:
—Think in advance about consequences of each module
being compromised
— Structure system to reduce consequences




Monolithic Architecture
* All modules in a common address space

—Unecessary security risk: compromise one
module and all others can be penetrated

* Alternatives:
—Java isolates modules using type-safety
—Languages like C require placing each module in
its own process to protect it
* Follow principle of least privilege at a
module granularity
—Provide each module with the least privilege
necessary to get its job done

— Architect system so most modules need only
minimal privileges

Module Design with Least Privilege

» Can you structure a complex system of
computations that require lots of code so
they’re isolated in modules with few
privileges?

* Modules with extra privileges should have
very little code

—The more privilege for a module, the greater the
confidence we need that it is correct
—More confidence generally requires less code...

Module Example

* Break up a network server listening on a
port below 1024 into two pieces:
—Small start-up wrapper and the app itself

—Binding to 0 — 1023 port requires root
privileges, so let wrapper run as root, bind to
desired port, and then spawn the app passing
it the bound port

* The app itself then runs as non-root user
—Limits damage if app is compromised
* Wrapper can be written in a few dozen

lines of code making thorough validation
possible




Web Server

« Composition of two modules
—1. Handles incoming network connections and
identifies requested URLs
» No privileges (root wrapper binds port 80)
—2. Translates URL into filename and reads it from the
filesystem
» Might run as special www userid and only documents
intended to be publicly visible are readable by user www
» Defense in Depth/Layered Defense
—Leverage OS’s file access controls so that even if
second module is penetrated, an attacker can’t harm
rest of system

Reasoning About Code
* Functions make certain assumptions about their
arguments
— Caller must make sure assumptions are valid
—These are often called preconditions
* Precondition for £ () is an assertion (a logical
proposition) that must hold at input to £ ()
—Function £ () must behave correctly if its
preconditions are met
—If any precondition is not met, all bets are off
» Caller must call £ () such that preconditions
true — an obligation on the caller, and callee may
freely assume obligation has been met

Simple Precondition Example

e /* Requires: p != NULL */
int deref (int *p) {
return *p;
}
Unsafe to dereference a null pointer
—Impose precondition that caller of deref () must
meet: p # NULL holds at entrance to deref ()

If all callers ensure this precondition, it will be
safe to call deref ()

+ Can combine assertions using logical
connectives (and, or, implication)

— Also existentially and universally quantified logical
formulas




Another Example

« /* Requires:

a != NULL
for all j in 0..n-1, a[j] '= NULL */
int sum(int *a[], size_t n) {

int total = 0, i;

for (i=0; i<n; i++)
total += *(a[i]);

return total;

}
» Second precondition:
—Forall j.(0 £ j < n) — a[jJ#NULL

—If you’re comfortable with formal logic, write your
assertions this way for precision

* Not necessary to be so formal

—Goal is to think explicitly about assumptions and
communicate requirements to others

Postconditions

* Postcondition for £ () is an assertion that
holds when £ () returns
—£ () has obligation of ensuring condition is true
when it returns
— Caller may assume postcondition has been
established by £ ()
* Example:
e /* Ensures: retval !'= NULL */
void *mymalloc(size_t n) {
void *p = malloc(n);
if (!'p) {
perror ("Out of memory") ;
exit (1),
}

return p;

Process for Writing Function Code

* First write down its preconditions and
postconditions
— Specifies what obligations caller has and what
caller is entitled to rely upon
« Verify that, no matter how function is
called, if precondition is met at function’s
entrance, then postcondition is
guaranteed to hold upon function’s return
—Must prove that this is true for all inputs

—Otherwise, you’ve found a bug in either
specification (preconditions/postconditions) or
implementation (function code)




Proving Precondition—Postcondition

» Basic idea:

— Write down a precondition and postcondition for
every line of code

— Apply same sort of reasoning as for function
* Requirement:

— Each statement’s postcondition must match (imply)
precondition of any following statement

— At every point between two statements, write down
invariant that must be true at that point

» Invariant is postcondition for preceding statement, and
precondition for next one

Example

+ Easy to tell if an isolated statement fits its
pre- and post-conditions
* Valid postcondition for “v=0;" is v=0 (no
matter what the precondition is)
— Or, if precondition for “v=v+1;” is v25, then a
valid postcondition is v26
« If precondition for “v=v+1;” is w<100,
then a valid postcondition is w<100
—Assuming v and w do not alias

Loop Invariant

» An assertion that is true at entrance to the loop, on any
path through the code

— Must be true before every loop iteration
» Both a pre- and post-condition for the loop body

- Example: Factorial function code
— /* Requires: n >= 1 */
int fact(int n) {
int i, t;
i=1;
t=1;
while (i <= n) {
t *=i;
it
return t;
}
— Prerequisite: input must be at least 1 for correctness
— Prove: value of fact () is always positive




Verifying Invariant Correctness

* /* Requires: n >= 1
Ensures: retval >= 0 */
int fact(int n) {

int i, t; /* n>=1 */
i=1; /* n>=1 && i==1 */
t=1; /* n>=1 && i==1 && t==1 */

while (i <= n) {
/* 1<=i && i<=n && t>=1 <-- loop invariant */

t *= i /* 1<=i && i<=n && t>=1 */
i+ /* 2<=i && i<=n+l && t>=1 */
} /* i>n && t>=1 */
return t;

}
Easy if we examine each step:
— Function’s precondition implies invariant at function body start
— Invariant at end of function body implies function’s postcondition
— If each statement matches invariant immediately before and after it,
everything’s OK
That leaves the loop invariant...

Verifying the Loop Invariant
Loop invariant: 1<=i s& i<=n && t>=1
Prove it is true at start of first loop iteration
— Follows from:

»n21 A i=1 A t=1 — 15i<n A t21

» if i=1, then certainly i21
Prove that if it holds at start of any loop iteration, then it
holds at start of next iteration (if there’s one)

— True, since invariant at end of loop body 2<i<n+1 A t21 and
loop termination condition i<n implies invariant at start of loop
body 1<i<n A t21

Follows by induction on number of iterations that loop
invariant is always true on entrance to loop body

— Thus, fact () will always make postcondition true, as
precondition is established by its caller

Another Example: Recursion

e /* Requires: n >= 1 */
int fact(int n) {
int t;
if (n == 1)
return 1;
t = fact(n-1);
t *= n,;
return t;

}

» Do you see how to prove that this code
always outputs a positive integer?




_ Analysis
e /* Requires: n >= 1
Ensures: retval >= 0 */
int fact(int n) {

int t;
if (n == 1)

return 1; /* n>=2 */
t = fact(n-1); /* t>=0 */
t *= n; /* t>=0 1:/
return t;

}
- Before recursive call to fact (), we know:

—n21 (by precondition), n#1 (since if stmt didn’t follow
then branch), and n is an integer

—Follows that n22, or n-121 (means precondition is met
when making recursive call)
« Can conclude that fact (n-1) return value is
positive from postcondition for fact ()

Function Post-/Pre-Conditions

+ Any time we see a function call, we have
to verify that its precondition will be met
—Then we can conclude its postcondition holds
and use this fact in our reasoning
« Annotating every function with pre- and
post-conditions enables modular
reasoning
— Can verify function £ () by looking only its

code and the annotations on every function
£() calls

» Can ignore code of all other functions and functions
called transitively
— Makes reasoning about £ () an almost purely
local activity

Documentation

» Pre-/post-conditions serve as useful
documentation
—To invoke Bob’s code, Alice only has to look at
pre- and post-conditions — she doesn’t need to
look at or understand his code
» Useful way to coordinate activity between
multiple programmers:
—Each module assigned to one programmer, and

pre-/post-conditions are a contract between caller
and callee

—Alice and Bob can negotiate the interface (and
responsibilities) between their code at design time




Avoiding Security Holes

» To avoid security holes (or program crashes)
— Some implicit requirements code must meet

» Must not divide by zero, make out-of-bounds memory
accesses, or deference null ptrs, ...

* We can try to prove that code meets these
requirements using same style of reasoning

Ex: when a pointer is dereferenced, there is an
implicit precondition that pointer is non-null and in-
bounds

Proving Array Accesses are in-bounds

/* Requires: a != NULL and a[] holds n elements */
int sum(int a[], size_t n) {
int total = 0, i;
for (i=0; i<n; i++)
/* Loop invariant: 0 <= i < n */
total += al[i];
return total;

}

Loop invariant true at entrance to first iteration
— First iteration ensures i=0

It is true at entrance to subsequent iterations

— Loop termination condition ensures i<n, and i only
increases

So array access a[i] is within bounds

Buffer Overruns

Proving absence of buffer overruns might
be much more difficult

—Depends on how code is structured
Instead of structuring your code so that it
is hard to provide a proof of no buffer
overruns, restructure it to make absence
of buffer overruns more evident

Lots of research into automated theorem

provers to try to mathematically prove

validity of alleged pre-/post-conditions
—Or to help infer such invariants




Pre-/Post-Condition Summary

* Looks tedious, but gets easier over time
— With practice you can avoid writing down detailed
invariants before every statement

» Think about data structures and code in terms of invariants
first, then write the code

—Usually can avoid formal notation, omit obvious
parts, and only write down important ones

» Usually writing down pre-/post-conditions and loop
invariant for every loop is enough

* Reasoning about code takes time and energy
—Worth it for highly secure code

) Defensive Programming
+ Like defensive driving, but for ¢code:

— Avoid depending on others, so that if they do something
unexpected, you won’t crash — survive unexpected behavior

+ Software engineering focuses on functionality:

— Given correct inputs, code produces useful/correct outputs
+ Security cares about what happens when program is

given invalid or unexpected inputs:
— Shouldn’t crash, cause undesirable side-effects, or produce
dangerous outputs for bad inputs

» Defensive programming

— Apply idea at every interface or security perimeter

» So each module remains robust even if all others misbehave

+ General strategy

— Assume attacker controls module’s inputs, make sure nothing
terrible happens

Defensive Programming

* Write module M to provide functionality to
a single client
— M should provide useful responses if client
provides valid inputs
— If client provides an invalid input, then M is no
longer under any obligation to provide useful
output

» M must still protect itself (and rest of system) from
being subverted by malicious inputs




Very Simple Example
e char charAt(char *str, int index) {
return str[index];
}
* Function is too fragile!
—charAt (NULL, any) will cause a crash

—charAt (s, i) causes a buffer overrun if i is out-of-
bounds (too small or large) for s

 Neither can be easily fixed without changing
function’s interface

Another Simple Example with Many Flaws
= char *double (char *str) {
size_t len = strlen(str);
char *p = malloc(2*len+l);
strcpy (p, str);
strcpy (p+len, str);
return p;
}
e double (NULL) will cause a crash
— Fix: test if str is a null ptr, and if so, return NULL
* Return value of malloc () is not checked
— If out-of-memory, malloc () will return null ptr and call to
strepy () will cause program crash
— Fix: test return value of malloc ()

* If stris very long, then expression 2*1en+1 will
overflow, potentially causing a buffer overrun
— 231 byte input str on 32-bit machine will have 1 byte
allocated, and strcpy will immediately trigger a heap
overrun

Trickier Example: Java Sort Routine

» Accepts array of objects that implements
Comparable interface and sorts them
— Each object implements compareTo () method, and
x.compareTo (y) must return a negative, zero, or positive
integer, depending on whether x is less than, equal to, or
greater than y
» Implementing a defensive sort routine is actually
fairly tricky, because a malicious client could supply
objects whose compareTo () method behaves
unexpectedly
— Calling x . compareTo (y) twice might yield two different
results (if x or y are malicious)
— Or, consider: x. compareTo (y) == 1,y.compareTo(z) ==
1, and z.compareTo (x) == 1

» Sort routine might go into an infinite loop or worse




Some General Advice

* 1. Check for error conditions
— Always check return values of all calls (assuming
this is how they indicate errors)

—In languages with exceptions, can locally handle it
or propagate (expose) to caller

— Check error paths very carefully

» Often poorly tested, so they often contain memory leaks
and other bugs

* What if you detect an error condition?
—For expected errors, try to recover
—Harder to recover from unexpected errors

— Always safe to abort processing and terminate if
an error condition is signaled (fail-stop behavior)




