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Review
• Attackers will exploit any and all flaws!

– Buffer overruns, format string usage errors, implicit 
casting, TOCTTOU, …

• Trusted Computing Base (TCB)
– System portion(s) that must operate correctly for 

system security goals to be assured
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Goals for Today
• Three principles in crypto design

– Conservative Design, Kerkhoff’s Principle, 
Proactively Study Attacks

• Principles for building secure systems
– 13 other principles
– Principles are neither necessary nor sufficient to 

ensure a secure system design, but they are often 
very helpful

– Goal is to explore what you can do at design time to 
improve security



4

Three Principles in Crypto Design
• Three principles widely accepted in crypto 

community that seem useful in computer security
– Conservative Design
– Kerkhoff’s Principle
– Proactively Study Attacks
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1. Conservative Design
• Systems should be evaluated according to 

worst plausible security failure, under 
assumptions favorable to attacker

• If you find such circumstance where the 
system can be rendered insecure, then 
you should seek a more secure system
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2. Kerkhoff’s Principle
• Cryptosystems should remain secure 

even when the attacker knows all internal 
details of the system

• The key should be the only thing that 
must be kept secret

• If your secrets are leaked, it is a lot easier 
to change the key than to change the 
algorithm
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3. Proactively Study Attacks
• We must devote considerable effort to trying 

to break our own systems
– How we can gain confidence in their security

• Other reasons:
– In security game, attacker gets last move
– Very costly if a security hole is discovered after 

wide system deployment
• Pays to try to identify attacks before bad 

guys find them
– Gives us lead time to close security holes before 

they are exploited in the wild
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Principles for Secure Systems
• General principles for secure system design

– Many drawn from a classic 1970s paper by Saltzer and 
Schroeder

• 1. Security is Economics
– No system is 100% secure against all attacks

» Only need to resist a certain level of attack
» No point buying a $10K firewall to protect $1K worth of 

trade secrets
– Often helpful to quantify level of effort an attacker 

would expend to break the system.
– Adi Shamir once wrote, “There are no secure 

systems, only degrees of insecurity”
» A lot of the science of computer security comes in 

measuring the degree of insecurity
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Economics Analogy
• Safes come with a security level rating
• Consumer-grade safe:

– Rated to resist attack for up to 5 minutes by 
anyone without tools

• High-end safe might be rated TL-30
– Secure against burglar with safecracking tools 

and less than 30 minutes access 
– We can hire security guards with a less than 30 

minute response time to any intrusion
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Corollary of This Principle
• Focus your energy on securing weakest links

– Security is like a chain: it is only as secure as the 
weakest link

– Attackers follow the path of least resistance, and will 
attack system at its weakest point

• No point in putting an expensive high-end 
deadbolt on a screen door

– Attacker isn’t going to bother trying to pick the lock 
when he can just rip out the screen and step through!

11

2. Least Privilege
• Minimize how much privilege you give each 

program and system component
– Only give a program the minimum access 

privileges it legitimately needs to do its job
• Least privilege is a powerful approach

– Doesn’t reduce failure probability, but can reduce 
expected cost of failures

• Less privilege a program has, less harm it 
can do if it goes awry or runs amok

– Computer-age version of shipbuilder’s notion of 
“watertight compartments”:

» Even if one compartment is breached, we minimize 
damage to rest of system’s integrity

12

Principle of Least Privilege Examples
• Can help reduce damage caused by buffer 

overruns or other program vulnerabilities
– Intruder gains all the program’s privileges
– Fewer privileges a program has, less harm done if 

it is compromised
• How is Unix in terms of least privilege?

– Answer: Pretty lousy!
– Program gets all privileges of invoking users
– I edit a file and editor receives all my user 

account’s privileges (read, modify, delete)
• Strictly speaking editor only needs access to 

file being edited to get job done
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Principle of Least Privilege Examples
• How is Windows in terms of least privilege?

– Answer:  Just as lousy!
– Arguably worse, as many users run as 

Administrator and many Windows programs 
require Administrator access to run

• Every program receives total power over the 
whole computer!!

• Microsoft’s security team recognizes this risk
– Advice: Use limited privilege account and “Run 

As…”
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3. Use Fail-Safe Defaults
• Use default-deny polices

– Start by denying all access, then allow only 
that which has been explicitly permitted

• Ensures that if security mechanisms fail 
or crash, default will be secure behavior

• Example: Packet filter is a router
– Failure means no packets will be routed

» Fail-safe behavior
– Fail-open behavior much more dangerous 

» Attacker just waits for packet filter to crash (or 
induces crash) and then the fort is wide open!
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Non-Fail-Safe Defaults Examples

• SunOS machines used to ship with + in 
/etc/hosts.equiv file

– Allowed anyone with root access on any 
machine on the Internet to log into your 
machine as root

• Irix machines used to ship with xhost +
in their X Windows configuration files

– Allowed anyone to connect to Xserver
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4. Separation of Responsibility
• Split up privilege

– No one person or program has complete power
– Require more than one party to approve before access 

is granted
• Two-party rule examples

– Movie theater: pay teller and get ticket stub, then 
separate employee tears ticket in half, collects a half of 
it and puts it in lockbox

» Helps prevent insider fraud (under-/over-charge)
– Most companies: purchases over certain amount must 

be approved by both  requesting employee and a 
purchasing officer

» Helps prevent insider fraud in vendor choice
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Nuclear Two-Party Rule
• Minuteman nuclear missile launch control ctr

– Underground control of ten nuclear missiles
– Two launch officers must agree to launch missiles
– Five control ctrs for squadron of 50 missiles

• Decommissioned center preserved at Whiteman 
AFB, Missouri
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5. Defense in Depth

• A closely related principle
–“You can recognize a security guru 

because they’re wearing both a belt and 
a set of suspenders”

• Principle is that with multiple 
redundant protections, all of them 
have to be breached to endanger 
system security
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6. Psychological Acceptability
• Important that users buy into security model
• Examples

– Company FW admin capriciously blocks apps that 
engineers need to get their jobs done

» They view FW as damage and tunnel around it
– Sys admin makes all passwords auto-generated long 

unmemorizable strings changed monthly
» Users simply write down their passwords on yellow post-its 

attached to their screens

• No system can remain secure for long when all 
its users actively seek to subvert it

– Sys admins aren’t going to win this game…
– Well-intentioned edicts can ultimately turn out to be 

counter-productive

20

7. Usability
• Security systems must be usable by ordinary 

people and take into account humans’ role
• Example

– Web browser pops up security warnings, but no 
indication of steps you should take

» What do you do? Like everyone else click “OK”…
– NSA’s crypto equipment stores key material on small 

physical token shaped like ordinary key
» To activate encryption device, insert key into device’s slot 

and turn it
» Intuitively understandable interface, even for 18-year-olds 

soldiers with minimal training
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8. Ensure Complete Mediation
• When enforcing access control policies, 

ensure that every access to every object 
is checked

• Caching is a slightly sticky subject
– Can sometimes avoid checking every access 

and allowing security decisions to be cached, 
but beware

• What if context relevant to security 
decision changes, and cache entry isn’t 
invalidated?

– Someone might get away with accessing 
something they shouldn’t
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9. Least Common Mechanism
• Be careful with shared code!.

– Original assumptions may no longer be valid
– Threat model may have changed

• Example: Internet users were once only 
researchers, who trusted each other

– Most networking protocols designed during 
those days assumed that all other network 
participants were benign and non-malicious

– Not true today! Millions of users, many 
malicious ones…

– Many old network protocols are suffering 
under the strain of attack (e.g., spam)
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10. Detect if You Can’t Prevent

• If you can’t prevent break-ins, at least 
detect them and provide a way to identify 
the perpetrator

• Forensics are important
– Keep audit logs so you can analyze break-ins 

afterwards
• Example: FIPS 140-1 federal standard for 

tamper-resistant hardware
– Type III devices (highest level) are very 

expensive
– Type II devices are only required to be tamper-

evident (e.g., a visibly broken seal)
» Lower cost and usable in broad set of apps
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11. Orthogonal Security

• Security mechanisms implemented 
orthogonally (transparently) to rest of 
system are useful in protecting legacy 
systems

• Also, allow us to improve assurance by 
composing multiple mechanisms in series
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12. Don’t Rely on Security Through Obscurity

• We’ve seen this one in the last lecture…
• ‘Security through obscurity’ phrase

– Systems that rely on secrecy of design, 
algorithms, or source code to be secure

• Claimed reasoning:
– “This system is so obscure, only 100 people 

understand anything about it, so what are the 
odds that adversaries will bother attacking it?”

• Self-defeating approach
– As system becomes more popular, more 

incentive to attack it, and cannot rely on its 
obscurity to keep attackers away…
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Secret Designs
• Very hard to keep system design secret from a 

dedicated adversary
– Every running installation has binary executable 

code that can be disassembled
– Hard to assess chances that secret will leak or 

difficulty of learning the secret
• If secret ever leaks, can be hard to update 

widely-deployed systems
– No recourse if someone ever succeeds 

• History has a lousy track record
– Many systems that have relied upon code or design 

secrecy for security have failed miserably
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13. Design Security in, From the Start
• Often doesn’t work to retrofit security into an 

existing implemented application
– Stuck with chosen architecture 
– Can’t change system decomposition to ensure 

any of the good principles we discussed

• Backwards compatibility often particularly 
painful, because you have to support worst 
insecurities of all previous versions
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Administrivia
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Writing Secure Code
• Goal is eliminating all security-relevant 

bugs, no matter how unlikely they are to 
be triggered in normal execution

– Intelligent adversary will find abnormal ways 
to interact with our code

• Different goal from software reliability
– Focus is on most likely to happen bugs
– Can ignore obscure condition bugs

• Dealing with malice is much harder than 
dealing with mischance
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Three Fundamental Techniques
• (1) Modularity and decomposition for security
• (2) Formal reasoning about code using invariants
• (3) Defensive programming

• In the next lecture, we’ll discuss programming 
language-specific issues and integrating security 
into the software lifecycle
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Modularity
• Decompose well-designed system into modules

– All interactions through well-defined interfaces
– Each module performs a clear function

» “What functionality it provides” not “how it is implemented”

• Granularity depends on system and language
– A module typically has state and code
– In Java (object-oriented), a class (or a few closely 

related classes)
– In C, its own file with a clear external interface, along 

with many internal functions that are not externally 
visible or callable
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Module Design
• Focus on interface design

– Interface is the caller-callee contract
– Should change less often than implementation 
– Caller only needs to understand interface
– Should interact only through defined interface

» No global variables for communication

• A module is a blob
– The interface is its surface area
– The implementation is its volume
– Thoughtful design has narrow and conceptually 

clean interfaces and modules have low surface area 
to volume ratio
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Module Decomposition Suggestions
• Minimize the harm caused by module failure

– Contain damage from module penetration (buffer 
overrun) or unexpected behavior (implementation bug)

• Draw a security perimeter around each module
– Keep one misbehaving module from changing  other 

modules’ behaviors
• Plan for failure:

– Think in advance about consequences of each module 
being compromised

– Structure system to reduce consequences
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Monolithic Architecture
• All modules in a common address space

– Unecessary security risk: compromise one 
module and all others can be penetrated

• Alternatives:
– Java isolates modules using type-safety
– Languages like C require placing each module in 

its own process to protect it
• Follow principle of least privilege at a 

module granularity
– Provide each module with the least privilege 

necessary to get its job done
– Architect system so most modules need only 

minimal privileges
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Module Design with Least Privilege

• Can you structure a complex system of 
computations that require lots of code so 
they’re isolated in modules with few 
privileges?

• Modules with extra privileges should have 
very little code

– The more privilege for a module, the greater the 
confidence we need that it is correct

– More confidence generally requires less code…
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Module Example
• Break up a network server listening on a 

port below 1024 into two pieces:
– Small start-up wrapper and the app itself
– Binding to 0 – 1023 port requires root 

privileges, so let wrapper run as root, bind to 
desired port, and then spawn the app passing 
it the bound port

• The app itself then runs as non-root user
– Limits damage if app is compromised

• Wrapper can be written in a few dozen 
lines of code making thorough validation 
possible
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Web Server
• Composition of two modules

– 1. Handles incoming network connections and 
identifies requested URLs

» No privileges (root wrapper binds port 80)
– 2. Translates URL into filename and reads it from the 

filesystem
» Might run as special www userid and only documents 

intended to be publicly visible are readable by user www

• Defense in Depth/Layered Defense
– Leverage OS’s file access controls so that even if 

second module is penetrated, an attacker can’t harm 
rest of system
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Reasoning About Code
• Functions make certain assumptions about their 

arguments
– Caller must make sure assumptions are valid
– These are often called preconditions

• Precondition for f() is an assertion (a logical 
proposition) that must hold at input to f()

– Function f() must behave correctly if its 
preconditions are met

– If any precondition is not met, all bets are off
• Caller must call f() such that preconditions 

true – an obligation on the caller, and callee may 
freely assume obligation has been met
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Simple Precondition Example
• /* Requires: p != NULL */
int deref(int *p) {

return *p;
}

• Unsafe to dereference a null pointer
– Impose precondition that caller of deref() must 

meet: p ≠ NULL holds at entrance to deref()
• If all callers ensure this precondition, it will be 

safe to call deref()
• Can combine assertions using logical 

connectives (and, or, implication)
– Also existentially and universally quantified logical 

formulas
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Another Example
• /* Requires:

a != NULL
for all j in 0..n-1,  a[j] != NULL */

int sum(int *a[], size_t n) {
int total = 0, i;
for (i=0; i<n; i++)

total += *(a[i]);
return total;

}

• Second precondition: 
– Forall j.(0 ≤ j < n) → a[j]≠NULL
– If you’re comfortable with formal logic, write your 

assertions this way for precision
• Not necessary to be so formal

– Goal is to think explicitly about assumptions and 
communicate requirements to others
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Postconditions
• Postcondition for f() is an assertion that 

holds when f() returns
–f() has obligation of ensuring condition is true 

when it returns
– Caller may assume postcondition has been 

established by f()
• Example:
• /* Ensures: retval != NULL */
void *mymalloc(size_t n) {

void *p = malloc(n);
if (!p) {

perror("Out of memory");
exit(1);

}
return p;

}
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Process for Writing Function Code

• First write down its preconditions and 
postconditions

– Specifies what obligations caller has and what 
caller is entitled to rely upon

• Verify that, no matter how function is 
called, if precondition is met at function’s 
entrance, then postcondition is 
guaranteed to hold upon function’s return 

– Must prove that this is true for all inputs
– Otherwise, you’ve found a bug in either 

specification (preconditions/postconditions) or 
implementation (function code)
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Proving Precondition→Postcondition
• Basic idea:

– Write down a precondition and postcondition for 
every line of code

– Apply same sort of reasoning as for function
• Requirement:

– Each statement’s postcondition must match (imply) 
precondition of any following statement

– At every point between two statements, write down 
invariant that must be true at that point

» Invariant is postcondition for preceding statement, and 
precondition for next one
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Example
• Easy to tell if an isolated statement fits its 

pre- and post-conditions
• Valid postcondition for “v=0;” is v=0 (no 

matter what the precondition is)
– Or, if precondition for “v=v+1;” is v≥5, then a 

valid postcondition is v≥6
• If precondition for “v=v+1;” is w≤100, 

then a valid postcondition is w≤100
– Assuming v and w do not alias
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Loop Invariant
• An assertion that is true at entrance to the loop, on any 

path through the code
– Must be true before every loop iteration

» Both a pre- and post-condition for the loop body

• Example: Factorial function code
– /* Requires: n >= 1 */
int fact(int n) {

int i, t;
i = 1;
t = 1;
while (i <= n) {

t *= i;
i++;

}
return t;

}

– Prerequisite: input must be at least 1 for correctness
– Prove: value of fact() is always positive
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Verifying Invariant Correctness
• /* Requires: n >= 1

Ensures: retval >= 0 */
int fact(int n) {

int i, t;         /* n>=1 */
i = 1;            /* n>=1 && i==1 */
t = 1;            /* n>=1 && i==1 && t==1 */
while (i <= n) {

/* 1<=i && i<=n && t>=1   <-- loop invariant */
t *= i;         /* 1<=i && i<=n && t>=1 */
i++;            /* 2<=i && i<=n+1 && t>=1 */

}                  /* i>n && t>=1 */
return t;

}

• Easy if we examine each step:
– Function’s precondition implies invariant at function body start
– Invariant at end of function body implies function’s postcondition
– If each statement matches invariant immediately before and after it, 

everything’s OK
• That leaves the loop invariant…
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Verifying the Loop Invariant
• Loop invariant: 1<=i && i<=n && t>=1
• Prove it is true at start of first loop iteration

– Follows from: 
» n≥1 ∧ i=1 ∧ t=1 → 1≤i≤n ∧ t≥1
» if i=1, then certainly i≥1 

• Prove that if it holds at start of any loop iteration, then it 
holds at start of next iteration (if there’s one)

– True, since invariant at end of loop body 2≤i≤n+1 ∧ t≥1 and 
loop termination condition i≤n implies invariant at start of loop 
body 1≤i≤n ∧ t≥1

• Follows by induction on number of iterations that loop 
invariant is always true on entrance to loop body

– Thus, fact() will always make postcondition true, as 
precondition is established by its caller
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Another Example: Recursion
• /* Requires: n >= 1 */
int fact(int n) {

int t;
if (n == 1)

return 1;
t = fact(n-1);
t *= n;
return t;

}

• Do you see how to prove that this code 
always outputs a positive integer?
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Analysis
• /* Requires: n >= 1

Ensures: retval >= 0 */
int fact(int n) {

int t;
if (n == 1)

return 1;         /* n>=2 */
t = fact(n-1);       /* t>=0 */
t *= n;               /* t>=0 */
return t;

}

• Before recursive call to fact(), we know:
–n≥1 (by precondition),  n≠1 (since if stmt didn’t follow 

then branch), and n is an integer
– Follows that n≥2, or n-1≥1 (means precondition is met 

when making recursive call)
• Can conclude that fact(n-1) return value is 

positive from postcondition for fact()
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Function Post-/Pre-Conditions
• Any time we see a function call, we have 

to verify that its precondition will be met
– Then we can conclude its postcondition holds 

and use this fact in our reasoning
• Annotating every function with pre- and 

post-conditions enables modular 
reasoning

– Can verify function f() by looking only its 
code and the annotations on every function 
f() calls

» Can ignore code of all other functions and functions 
called transitively

– Makes reasoning about f() an almost purely 
local activity
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Documentation
• Pre-/post-conditions serve as useful 

documentation
– To invoke Bob’s code, Alice only has to look at 

pre- and post-conditions – she doesn’t need to 
look at or understand his code

• Useful way to coordinate activity between 
multiple programmers:

– Each module assigned to one programmer, and 
pre-/post-conditions are a contract between caller 
and callee

– Alice and Bob can negotiate the interface (and 
responsibilities) between their code at design time
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Avoiding Security Holes
• To avoid security holes (or program crashes)

– Some implicit requirements code must meet
» Must not divide by zero, make out-of-bounds memory 

accesses, or deference null ptrs, …

• We can try to prove that code meets these 
requirements using same style of reasoning

– Ex: when a pointer is dereferenced, there is an 
implicit precondition that pointer is non-null and in-
bounds
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Proving Array Accesses are in-bounds

• /* Requires: a != NULL and a[] holds n elements */
int sum(int a[], size_t n) {

int total = 0, i;
for (i=0; i<n; i++)

/* Loop invariant: 0 <= i < n */
total += a[i];

return total;
}

• Loop invariant true at entrance to first iteration
– First iteration ensures i=0

• It is true at entrance to subsequent iterations
– Loop termination condition ensures i<n, and i only 

increases
• So array access a[i] is within bounds
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Buffer Overruns
• Proving absence of buffer overruns might 

be much more difficult
– Depends on how code is structured

• Instead of structuring your code so that it 
is hard to provide a proof of no buffer 
overruns, restructure it to make absence 
of buffer overruns more evident

• Lots of research into automated theorem 
provers to try to mathematically prove 
validity of alleged pre-/post-conditions

– Or to help infer such invariants
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Pre-/Post-Condition Summary
• Looks tedious, but gets easier over time

– With practice you can avoid writing down detailed 
invariants before every statement

» Think about data structures and code in terms of invariants 
first, then write the code

– Usually can avoid formal notation, omit obvious 
parts, and only write down important ones

» Usually writing down pre-/post-conditions and loop 
invariant for every loop is enough

• Reasoning about code takes time and energy
– Worth it for highly secure code
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Defensive Programming
• Like defensive driving, but for code: 

– Avoid depending on others, so that if they do something 
unexpected, you won’t crash – survive unexpected behavior

• Software engineering focuses on functionality:
– Given correct inputs, code produces useful/correct outputs

• Security cares about what happens when program is 
given invalid or unexpected inputs:

– Shouldn’t crash, cause undesirable side-effects, or produce 
dangerous outputs for bad inputs

• Defensive programming
– Apply idea at every interface or security perimeter

» So each module remains robust even if all others misbehave

• General strategy
– Assume attacker controls module’s inputs, make sure nothing 

terrible happens
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Defensive Programming
• Write module M to provide functionality to 

a single client
– M should provide useful responses if client 

provides valid inputs
– If client provides an invalid input, then M is no 

longer under any obligation to provide useful 
output

» M must still protect itself (and rest of system) from 
being subverted by malicious inputs
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Very Simple Example
• char charAt(char *str, int index) {

return str[index];
}

• Function is too fragile!
–charAt(NULL, any) will cause a crash
–charAt(s, i) causes a buffer overrun if i is out-of-

bounds (too small or large) for s
• Neither can be easily fixed without changing 

function’s interface
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Another Simple Example with Many Flaws
• char *double(char *str) {

size_t len = strlen(str);
char *p = malloc(2*len+1);
strcpy(p, str);
strcpy(p+len, str);
return p;

}
• double(NULL) will cause a crash

– Fix: test if str is a null ptr, and if so, return NULL
• Return value of malloc() is not checked

– If out-of-memory, malloc() will return null ptr and call to 
strcpy() will cause program crash

– Fix: test return value of malloc()
• If str is very long, then expression 2*len+1 will 

overflow, potentially causing a buffer overrun
– 231 byte input str on 32-bit machine will have 1 byte 

allocated, and strcpy will immediately trigger a heap 
overrun

60

Trickier Example: Java Sort Routine
• Accepts array of objects that implements 
Comparable interface and sorts them

– Each object implements compareTo() method, and 
x.compareTo(y) must return a negative, zero, or positive 
integer, depending on whether x is less than, equal to, or 
greater than y

• Implementing a defensive sort routine is actually 
fairly tricky, because a malicious client could supply 
objects whose compareTo() method behaves 
unexpectedly

– Calling x.compareTo(y) twice might yield two different 
results (if x or y are malicious)

– Or, consider: x.compareTo(y) == 1, y.compareTo(z) == 
1, and z.compareTo(x) == 1

• Sort routine might go into an infinite loop or worse
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Some General Advice
• 1. Check for error conditions

– Always check return values of all calls (assuming 
this is how they indicate errors)

– In languages with exceptions, can locally handle it 
or propagate (expose) to caller

– Check error paths very carefully
» Often poorly tested, so they often contain memory leaks 

and other bugs
• What if you detect an error condition?

– For expected errors, try to recover
– Harder to recover from unexpected errors
– Always safe to abort processing and terminate if 

an error condition is signaled (fail-stop behavior)


