Defensive Programming

Dawn Song
dawnsong@cs.berkeley.edu

Reasoning About Code
* Functions make certain assumptions about their
arguments
— Caller must make sure assumptions are valid
—These are often called preconditions
* Precondition for £ () is an assertion (a logical
proposition) that must hold at input to £ ()
—Function £ () must behave correctly if its
preconditions are met
—If any precondition is not met, all bets are off
» Caller must call £ () such that preconditions
true — an obligation on the caller, and callee may
freely assume obligation has been met

Simple Precondition Example

e int deref (int *p) {
return *p;

}

» Unsafe to dereference a null pointer
—Impose precondition that caller of deref () must
meet: p # NULL holds at entrance to deref ()

« If all callers ensure this precondition, it will be

safe to call deref ()

+ Can combine assertions using logical
connectives (and, or, implication)

— Also existentially and universally quantified logical
formulas

Another Example

© int sum(int *a[], size t n) {
int total = 0, i;
for (i=0; i<n; i++)
total += *(a[i]);
return total;

}
* Precondition:
—Forall j.(0 £j < n) — a[jJ#NULL

—If you’re comfortable with formal logic, write your
assertions this way for precision

* Not necessary to be so formal

—Goal is to think explicitly about assumptions and
communicate requirements to others

Postconditions

» Postcondition for £ () is an assertion that holds
when £ () returns
—£ () has obligation of ensuring condition is true when
it returns
— Caller may assume postcondition has been
established by £ ()
* Example:
e /* Ensures: retval !'= NULL */
void *mymalloc(size_t n) {
void *p = malloc(n);
if (!'p) {
perror ("Out of memory") ;
exit (1),
}

return p;

Process for Writing Function Code

* First write down its preconditions and
postconditions
— Specifies what obligations caller has and what
caller is entitled to rely upon
« Verify that, no matter how function is
called, if precondition is met at function’s
entrance, then postcondition is
guaranteed to hold upon function’s return
—Must prove that this is true for all inputs
—Otherwise, you’ve found a bug in either

specification (preconditions/postconditions) or
implementation (function code)

Proving Precondition—Postcondition

» Basic idea:

— Write down a precondition and postcondition for
every line of code

— Apply same sort of reasoning as for function
* Requirement:

— Each statement’s postcondition must match (imply)
precondition of any following statement

— At every point between two statements, write down
invariant that must be true at that point

» Invariant is postcondition for preceding statement, and
precondition for next one

Example

+ Easy to tell if an isolated statement fits its
pre- and post-conditions
* Valid postcondition for “v=0;" is v=0 (no
matter what the precondition is)
— Or, if precondition for “v=v+1;” is v25, then a
valid postcondition is v26
« If precondition for “v=v+1;” is w<100,
then a valid postcondition is w<100
—Assuming v and w do not alias

Loop Invariant

» An assertion that is true at entrance to the loop, on any
path through the code

— Must be true before every loop iteration
» Both a pre- and post-condition for the loop body

- Example: Factorial function code
— /* Requires: n >= 1 */
int fact(int n) {
int i, t;
i=1;
t=1;
while (i <= n) {
t *=i;
it
return t;
}
— Prerequisite: input must be at least 1 for correctness
— Prove: value of fact () is always positive

Verifying Invariant Correctness

* /* Requires: n >= 1
Ensures: retval >= 0 */
int fact(int n) {

int i, t; /* n>=1 */
i=1; /* n>=1 && i==1 */
t=1; /* n>=1 && i==1 && t==1 */

while (i <= n) {
/* 1<=i && i<=n && t>=1 <-- loop invariant */

t *= i /* 1<=i && i<=n && t>=1 */
i+ /* 2<=i && i<=n+l && t>=1 */
} /* i>n && t>=1 */
return t;

}
Easy if we examine each step:
— Function’s precondition implies invariant at function body start
— Invariant at end of function body implies function’s postcondition
— If each statement matches invariant immediately before and after it,
everything’s OK
That leaves the loop invariant...

Verifying the Loop Invariant
Loop invariant: 1<=i s& i<=n && t>=1
Prove it is true at start of first loop iteration
— Follows from:

»n21 A i=1 A t=1 — 15i<n A t21

» if i=1, then certainly i21
Prove that if it holds at start of any loop iteration, then it
holds at start of next iteration (if there’s one)

— True, since invariant at end of loop body 2<i<n+1 A t21 and
loop termination condition i<n implies invariant at start of loop
body 1<i<n A t21

Follows by induction on number of iterations that loop
invariant is always true on entrance to loop body

— Thus, fact () will always make postcondition true, as
precondition is established by its caller

Another Example: Recursion

e /* Requires: n >= 1 */
int fact(int n) {
int t;
if (n == 1)
return 1;
t = fact(n-1);
t *= n,;
return t;

}

» Do you see how to prove that this code
always outputs a positive integer?

_ Analysis
e /* Requires: n >= 1
Ensures: retval >= 0 */
int fact(int n) {

int t;
if (n == 1)

return 1; /* n>=2 */
t = fact(n-1); /* t>=0 */
t *= n; /* t>=0 1:/
return t;

}
- Before recursive call to fact (), we know:

—n21 (by precondition), n#1 (since if stmt didn’t follow
then branch), and n is an integer

—Follows that n22, or n-121 (means precondition is met
when making recursive call)
« Can conclude that fact (n-1) return value is
positive from postcondition for fact ()

Function Post-/Pre-Conditions

+ Any time we see a function call, we have
to verify that its precondition will be met
—Then we can conclude its postcondition holds
and use this fact in our reasoning
« Annotating every function with pre- and
post-conditions enables modular
reasoning
— Can verify function £ () by looking only its

code and the annotations on every function
£() calls

» Can ignore code of all other functions and functions
called transitively
— Makes reasoning about £ () an almost purely
local activity

Documentation

» Pre-/post-conditions serve as useful
documentation
—To invoke Bob’s code, Alice only has to look at
pre- and post-conditions — she doesn’t need to
look at or understand his code
» Useful way to coordinate activity between
multiple programmers:
—Each module assigned to one programmer, and

pre-/post-conditions are a contract between caller
and callee

—Alice and Bob can negotiate the interface (and
responsibilities) between their code at design time

Avoiding Security Holes

» To avoid security holes (or program crashes)
— Some implicit requirements code must meet

» Must not divide by zero, make out-of-bounds memory
accesses, or deference null ptrs, ...

* We can try to prove that code meets these
requirements using same style of reasoning

Ex: when a pointer is dereferenced, there is an
implicit precondition that pointer is non-null and in-
bounds

Proving Array Accesses are in-bounds

/* Requires: a != NULL and a[] holds n elements */
int sum(int a[], size_t n) {
int total = 0, i;
for (i=0; i<n; i++)
/* Loop invariant: 0 <= i < n */
total += al[i];
return total;

}

Loop invariant true at entrance to first iteration
— First iteration ensures i=0

It is true at entrance to subsequent iterations

— Loop termination condition ensures i<n, and i only
increases

So array access a[i] is within bounds

Buffer Overruns

Proving absence of buffer overruns might
be much more difficult

—Depends on how code is structured
Instead of structuring your code so that it
is hard to provide a proof of no buffer
overruns, restructure it to make absence
of buffer overruns more evident

Lots of research into automated theorem

provers to try to mathematically prove

validity of alleged pre-/post-conditions
—Or to help infer such invariants

Pre-/Post-Condition Summary

* Looks tedious, but gets easier over time
— With practice you can avoid writing down detailed
invariants before every statement

» Think about data structures and code in terms of invariants
first, then write the code

—Usually can avoid formal notation, omit obvious
parts, and only write down important ones

» Usually writing down pre-/post-conditions and loop
invariant for every loop is enough

* Reasoning about code takes time and energy
—Worth it for highly secure code

) Defensive Programming
+ Like defensive driving, but for ¢code:

— Avoid depending on others, so that if they do something
unexpected, you won’t crash — survive unexpected behavior

+ Software engineering focuses on functionality:

— Given correct inputs, code produces useful/correct outputs
+ Security cares about what happens when program is

given invalid or unexpected inputs:
— Shouldn’t crash, cause undesirable side-effects, or produce
dangerous outputs for bad inputs

» Defensive programming

— Apply idea at every interface or security perimeter

» So each module remains robust even if all others misbehave

+ General strategy

— Assume attacker controls module’s inputs, make sure nothing
terrible happens

Defensive Programming

* Write module M to provide functionality to
a single client
— M should provide useful responses if client
provides valid inputs
— If client provides an invalid input, then M is no
longer under any obligation to provide useful
output

» M must still protect itself (and rest of system) from
being subverted by malicious inputs

Very Simple Example
e char charAt(char *str, int index) {
return str[index];
}
* Function is too fragile!
—charAt (NULL, any) will cause a crash

—charAt (s, i) causes a buffer overrun if i is out-of-
bounds (too small or large) for s

 Neither can be easily fixed without changing
function’s interface

Another Simple Example with Many Flaws
= char *double (char *str) {
size_t len = strlen(str);
char *p = malloc(2*len+l);
strcpy (p, str);
strcpy (p+len, str);
return p;
}
e double (NULL) will cause a crash
— Fix: test if str is a null ptr, and if so, return NULL
* Return value of malloc () is not checked
— If out-of-memory, malloc () will return null ptr and call to
strepy () will cause program crash
— Fix: test return value of malloc ()

* If stris very long, then expression 2*1en+1 will
overflow, potentially causing a buffer overrun
— 231 byte input str on 32-bit machine will have 1 byte
allocated, and strcpy will immediately trigger a heap
overrun

Trickier Example: Java Sort Routine

» Accepts array of objects that implements
Comparable interface and sorts them
— Each object implements compareTo () method, and
x.compareTo (y) must return a negative, zero, or positive
integer, depending on whether x is less than, equal to, or
greater than y
» Implementing a defensive sort routine is actually
fairly tricky, because a malicious client could supply
objects whose compareTo () method behaves
unexpectedly
— Calling x . compareTo (y) twice might yield two different
results (if x or y are malicious)
— Or, consider: x. compareTo (y) == 1,y.compareTo(z) ==
1, and z.compareTo (x) == 1

» Sort routine might go into an infinite loop or worse

Some General Advice

* 1. Check for error conditions
— Always check return values of all calls (assuming
this is how they indicate errors)
—In languages with exceptions, can locally handle it
or propagate (expose) to caller
— Check error paths very carefully

» Often poorly tested, so they often contain memory leaks
and other bugs

* What if you detect an error condition?
—For expected errors, try to recover
—Harder to recover from unexpected errors

— Always safe to abort processing and terminate if
an error condition is signaled (fail-stop behavior)

Some General Advice

* 2. Validate All Inputs

—Sanity-check all inputs from rest of
program

—Treat external inputs (could be from
adversary) with particular caution
—Be conservative

» Better to limit inputs to expected values (might
cause some loss of functionality) than to
liberally allow all (might permit unexpected
security holes)

What's Wrong with this Code?

- char *username = getenv("USER") ;
char *buf = malloc(strlen(username)+6) ;
sprintf (buf, "mail %s", username) ;
FILE *f = popen(buf, "r");
fprintf (£, "Hi.\n");
fclose (f) ;
« Answer: If attacker controls USER environment variable,
then could arrange for its value to be something like
“adj; /bin/rm -rf $HOME”

— popen () passes its input to shell for execution, and shell will
execute command “mail adj” followed by “/bin/rm -rf
$SHOME”

+ Solution: validate that username looks reasonable

— If attacker can control other env vars (e.g., PATH), then could
cause wrong mail command to be invoked — have to validate
whole environment!

Advice: 3. Whitelist, Don't Blacklist

+ Common mistake:

—When validating input from an untrusted
source, trying to enumerate bad inputs and
block them

—Don’t do that! Why?

—Known as blacklisting (analogous to default-
allow policy)

— Can overlook some patterns of dangerous
inputs
* Instead, use whitelist of known-good
types of inputs, and block anything else
— Default-deny policy (much safer)

Whitelisting Example

» Check a username using a regular
expression:
—[a-z] [a-z0-9] *
—char *validate username (char *u) {
char *p;
if ('u || *u < 'a' || *u > 'z')
die();
for (p=u+l; *p; pt++)
if ((*p < '0' || *p > '9') &&
(*p < 'a' || *p > 'z'"))
die();
return u;

}

» Use with appropriate error-checking
before using a user-supplied username

2

More Advice

» 4. Don’t crash or enter infinite loops,
Don’t corrupt memory

—Regardless of received inputs — NO
abnormal termination, infinite loops,
internal state corruption, control flow
hijacks

—Explicitly validate all inputs and avoid
memory leaks

—Defend against DoS attacks:

» Attacker supplies inputs that lead to worst-
case performance (hashtable with O(1)
expected, but O(n) worst case lookup)

More Advice

+ 5. Beware of integer overflow

—Integer overflow often violates programmer’s
mental model and leads to unexpected
(undesired) behavior

» 6. Check exception-safety of the code

— Explicitly (programmer) thrown and implicitly
(platform) thrown exceptions

— Verify that your code doesn’t throw runtime
exceptions (null ptr deref, div 0,...)
—Less restrictively, check that all such

exceptions are handled and will propagate
across module boundaries

Famous Example: Ariane 5
+ Ariane 4 flight control sw written in Ada
— Same software reused for more powerful Ariane 5
+ Ariane 5 blew up shortly after first launch
— Cause: uncaught integer overflow exception caused
software to terminate abruptly...
* 16-bit reg: flight trajectory’s horizontal velocity

— Ariane 4 - verified range of physically possible flight
trajectories could not overflow variable, so no need for
exception handler...

 Ariane 5’s rocket engine was more powerful,
causing larger horizontal velocity to be stored into
register triggering overflow...

—Losses of around $500 million

