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Reasoning About Code
• Functions make certain assumptions about their 

arguments
– Caller must make sure assumptions are valid
– These are often called preconditions

• Precondition for f() is an assertion (a logical 
proposition) that must hold at input to f()

– Function f() must behave correctly if its 
preconditions are met

– If any precondition is not met, all bets are off
• Caller must call f() such that preconditions 

true – an obligation on the caller, and callee may 
freely assume obligation has been met
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Simple Precondition Example
• int deref(int *p) {

return *p;
}

• Unsafe to dereference a null pointer
– Impose precondition that caller of deref() must 

meet: p ≠ NULL holds at entrance to deref()
• If all callers ensure this precondition, it will be 

safe to call deref()
• Can combine assertions using logical 

connectives (and, or, implication)
– Also existentially and universally quantified logical 

formulas
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Another Example
• int sum(int *a[], size_t n) {

int total = 0, i;
for (i=0; i<n; i++)

total += *(a[i]);
return total;

}

• Precondition: 
– Forall j.(0 ≤ j < n) → a[j]≠NULL
– If you’re comfortable with formal logic, write your 

assertions this way for precision
• Not necessary to be so formal

– Goal is to think explicitly about assumptions and 
communicate requirements to others
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Postconditions
• Postcondition for f() is an assertion that holds 

when f() returns
–f() has obligation of ensuring condition is true when 

it returns
– Caller may assume postcondition has been 

established by f()
• Example:
• /* Ensures: retval != NULL */
void *mymalloc(size_t n) {

void *p = malloc(n);
if (!p) {

perror("Out of memory");
exit(1);

}
return p;

}
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Process for Writing Function Code

• First write down its preconditions and 
postconditions

– Specifies what obligations caller has and what 
caller is entitled to rely upon

• Verify that, no matter how function is 
called, if precondition is met at function’s 
entrance, then postcondition is 
guaranteed to hold upon function’s return 

– Must prove that this is true for all inputs
– Otherwise, you’ve found a bug in either 

specification (preconditions/postconditions) or 
implementation (function code)
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Proving Precondition→Postcondition
• Basic idea:

– Write down a precondition and postcondition for 
every line of code

– Apply same sort of reasoning as for function
• Requirement:

– Each statement’s postcondition must match (imply) 
precondition of any following statement

– At every point between two statements, write down 
invariant that must be true at that point

» Invariant is postcondition for preceding statement, and 
precondition for next one
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Example
• Easy to tell if an isolated statement fits its 

pre- and post-conditions
• Valid postcondition for “v=0;” is v=0 (no 

matter what the precondition is)
– Or, if precondition for “v=v+1;” is v≥5, then a 

valid postcondition is v≥6
• If precondition for “v=v+1;” is w≤100, 

then a valid postcondition is w≤100
– Assuming v and w do not alias
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Loop Invariant
• An assertion that is true at entrance to the loop, on any 

path through the code
– Must be true before every loop iteration

» Both a pre- and post-condition for the loop body

• Example: Factorial function code
– /* Requires: n >= 1 */
int fact(int n) {

int i, t;
i = 1;
t = 1;
while (i <= n) {

t *= i;
i++;

}
return t;

}

– Prerequisite: input must be at least 1 for correctness
– Prove: value of fact() is always positive



10

Verifying Invariant Correctness
• /* Requires: n >= 1

Ensures: retval >= 0 */
int fact(int n) {

int i, t;         /* n>=1 */
i = 1;            /* n>=1 && i==1 */
t = 1;            /* n>=1 && i==1 && t==1 */
while (i <= n) {

/* 1<=i && i<=n && t>=1   <-- loop invariant */
t *= i;         /* 1<=i && i<=n && t>=1 */
i++;            /* 2<=i && i<=n+1 && t>=1 */

}                  /* i>n && t>=1 */
return t;

}

• Easy if we examine each step:
– Function’s precondition implies invariant at function body start
– Invariant at end of function body implies function’s postcondition
– If each statement matches invariant immediately before and after it, 

everything’s OK
• That leaves the loop invariant…
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Verifying the Loop Invariant
• Loop invariant: 1<=i && i<=n && t>=1
• Prove it is true at start of first loop iteration

– Follows from: 
» n≥1 ∧ i=1 ∧ t=1 → 1≤i≤n ∧ t≥1
» if i=1, then certainly i≥1 

• Prove that if it holds at start of any loop iteration, then it 
holds at start of next iteration (if there’s one)

– True, since invariant at end of loop body 2≤i≤n+1 ∧ t≥1 and 
loop termination condition i≤n implies invariant at start of loop 
body 1≤i≤n ∧ t≥1

• Follows by induction on number of iterations that loop 
invariant is always true on entrance to loop body

– Thus, fact() will always make postcondition true, as 
precondition is established by its caller
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Another Example: Recursion
• /* Requires: n >= 1 */
int fact(int n) {

int t;
if (n == 1)

return 1;
t = fact(n-1);
t *= n;
return t;

}

• Do you see how to prove that this code 
always outputs a positive integer?
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Analysis
• /* Requires: n >= 1

Ensures: retval >= 0 */
int fact(int n) {

int t;
if (n == 1)

return 1;         /* n>=2 */
t = fact(n-1);       /* t>=0 */
t *= n;               /* t>=0 */
return t;

}

• Before recursive call to fact(), we know:
–n≥1 (by precondition),  n≠1 (since if stmt didn’t follow 

then branch), and n is an integer
– Follows that n≥2, or n-1≥1 (means precondition is met 

when making recursive call)
• Can conclude that fact(n-1) return value is 

positive from postcondition for fact()

14

Function Post-/Pre-Conditions
• Any time we see a function call, we have 

to verify that its precondition will be met
– Then we can conclude its postcondition holds 

and use this fact in our reasoning
• Annotating every function with pre- and 

post-conditions enables modular 
reasoning

– Can verify function f() by looking only its 
code and the annotations on every function 
f() calls

» Can ignore code of all other functions and functions 
called transitively

– Makes reasoning about f() an almost purely 
local activity
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Documentation
• Pre-/post-conditions serve as useful 

documentation
– To invoke Bob’s code, Alice only has to look at 

pre- and post-conditions – she doesn’t need to 
look at or understand his code

• Useful way to coordinate activity between 
multiple programmers:

– Each module assigned to one programmer, and 
pre-/post-conditions are a contract between caller 
and callee

– Alice and Bob can negotiate the interface (and 
responsibilities) between their code at design time
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Avoiding Security Holes
• To avoid security holes (or program crashes)

– Some implicit requirements code must meet
» Must not divide by zero, make out-of-bounds memory 

accesses, or deference null ptrs, …

• We can try to prove that code meets these 
requirements using same style of reasoning

– Ex: when a pointer is dereferenced, there is an 
implicit precondition that pointer is non-null and in-
bounds
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Proving Array Accesses are in-bounds

• /* Requires: a != NULL and a[] holds n elements */
int sum(int a[], size_t n) {

int total = 0, i;
for (i=0; i<n; i++)

/* Loop invariant: 0 <= i < n */
total += a[i];

return total;
}

• Loop invariant true at entrance to first iteration
– First iteration ensures i=0

• It is true at entrance to subsequent iterations
– Loop termination condition ensures i<n, and i only 

increases
• So array access a[i] is within bounds
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Buffer Overruns
• Proving absence of buffer overruns might 

be much more difficult
– Depends on how code is structured

• Instead of structuring your code so that it 
is hard to provide a proof of no buffer 
overruns, restructure it to make absence 
of buffer overruns more evident

• Lots of research into automated theorem 
provers to try to mathematically prove 
validity of alleged pre-/post-conditions

– Or to help infer such invariants
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Pre-/Post-Condition Summary
• Looks tedious, but gets easier over time

– With practice you can avoid writing down detailed 
invariants before every statement

» Think about data structures and code in terms of invariants 
first, then write the code

– Usually can avoid formal notation, omit obvious 
parts, and only write down important ones

» Usually writing down pre-/post-conditions and loop 
invariant for every loop is enough

• Reasoning about code takes time and energy
– Worth it for highly secure code
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Defensive Programming
• Like defensive driving, but for code: 

– Avoid depending on others, so that if they do something 
unexpected, you won’t crash – survive unexpected behavior

• Software engineering focuses on functionality:
– Given correct inputs, code produces useful/correct outputs

• Security cares about what happens when program is 
given invalid or unexpected inputs:

– Shouldn’t crash, cause undesirable side-effects, or produce 
dangerous outputs for bad inputs

• Defensive programming
– Apply idea at every interface or security perimeter

» So each module remains robust even if all others misbehave

• General strategy
– Assume attacker controls module’s inputs, make sure nothing 

terrible happens
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Defensive Programming
• Write module M to provide functionality to 

a single client
– M should provide useful responses if client 

provides valid inputs
– If client provides an invalid input, then M is no 

longer under any obligation to provide useful 
output

» M must still protect itself (and rest of system) from 
being subverted by malicious inputs
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Very Simple Example
• char charAt(char *str, int index) {

return str[index];
}

• Function is too fragile!
–charAt(NULL, any) will cause a crash
–charAt(s, i) causes a buffer overrun if i is out-of-

bounds (too small or large) for s
• Neither can be easily fixed without changing 

function’s interface
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Another Simple Example with Many Flaws
• char *double(char *str) {

size_t len = strlen(str);
char *p = malloc(2*len+1);
strcpy(p, str);
strcpy(p+len, str);
return p;

}
• double(NULL) will cause a crash

– Fix: test if str is a null ptr, and if so, return NULL
• Return value of malloc() is not checked

– If out-of-memory, malloc() will return null ptr and call to 
strcpy() will cause program crash

– Fix: test return value of malloc()
• If str is very long, then expression 2*len+1 will 

overflow, potentially causing a buffer overrun
– 231 byte input str on 32-bit machine will have 1 byte 

allocated, and strcpy will immediately trigger a heap 
overrun
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Trickier Example: Java Sort Routine
• Accepts array of objects that implements 
Comparable interface and sorts them

– Each object implements compareTo() method, and 
x.compareTo(y) must return a negative, zero, or positive 
integer, depending on whether x is less than, equal to, or 
greater than y

• Implementing a defensive sort routine is actually 
fairly tricky, because a malicious client could supply 
objects whose compareTo() method behaves 
unexpectedly

– Calling x.compareTo(y) twice might yield two different 
results (if x or y are malicious)

– Or, consider: x.compareTo(y) == 1, y.compareTo(z) == 
1, and z.compareTo(x) == 1

• Sort routine might go into an infinite loop or worse
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Some General Advice
• 1. Check for error conditions

– Always check return values of all calls (assuming 
this is how they indicate errors)

– In languages with exceptions, can locally handle it 
or propagate (expose) to caller

– Check error paths very carefully
» Often poorly tested, so they often contain memory leaks 

and other bugs
• What if you detect an error condition?

– For expected errors, try to recover
– Harder to recover from unexpected errors
– Always safe to abort processing and terminate if 

an error condition is signaled (fail-stop behavior)
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Some General Advice
• 2. Validate All Inputs

–Sanity-check all inputs from rest of 
program

–Treat external inputs (could be from 
adversary) with particular caution

–Be conservative
» Better to limit inputs to expected values (might 

cause some loss of functionality) than to 
liberally allow all (might permit unexpected 
security holes)
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What’s Wrong with this Code?
• char *username = getenv("USER");

char *buf = malloc(strlen(username)+6);
sprintf(buf, "mail %s", username);
FILE *f = popen(buf, "r");
fprintf(f, "Hi.\n");
fclose(f);

• Answer: If attacker controls USER environment variable, 
then could arrange for its value to be something like 
“adj; /bin/rm -rf $HOME”

– popen() passes its input to shell for execution, and shell will 
execute command “mail adj” followed by “/bin/rm -rf
$HOME”

• Solution: validate that username looks reasonable
– If attacker can control other env vars (e.g., PATH), then could 

cause wrong mail command to be invoked → have to validate 
whole environment!
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Advice: 3. Whitelist, Don’t Blacklist

• Common mistake:
– When validating input from an untrusted 

source, trying to enumerate bad inputs and 
block them

– Don’t do that! Why?
– Known as blacklisting (analogous to default-

allow policy)
– Can overlook some patterns of dangerous 

inputs
• Instead, use whitelist of known-good 

types of inputs, and block anything else
– Default-deny policy (much safer)
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Whitelisting Example
• Check a username using a regular 

expression:
–[a-z][a-z0-9]*
– char *validate_username(char *u) {

char *p;
if (!u || *u < 'a' || *u > 'z')

die();
for (p=u+1; *p; p++)

if ((*p < '0' || *p > '9') &&
(*p < 'a' || *p > 'z'))
die();

return u;
}

• Use with appropriate error-checking 
before using a user-supplied username
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More Advice
• 4. Don’t crash or enter infinite loops, 

Don’t corrupt memory
–Regardless of received inputs – NO 

abnormal termination, infinite loops, 
internal state corruption, control flow 
hijacks

–Explicitly validate all inputs and avoid 
memory leaks

–Defend against DoS attacks:
» Attacker supplies inputs that lead to worst-

case performance (hashtable with O(1) 
expected, but O(n) worst case lookup)



31

More Advice
• 5. Beware of integer overflow

– Integer overflow often violates programmer’s 
mental model and leads to unexpected 
(undesired) behavior

• 6. Check exception-safety of the code
– Explicitly (programmer) thrown and implicitly 

(platform) thrown exceptions
– Verify that your code doesn’t throw runtime 

exceptions (null ptr deref, div 0,…)
– Less restrictively, check that all such 

exceptions are handled and will propagate 
across module boundaries
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Famous Example: Ariane 5
• Ariane 4 flight control sw written in Ada

– Same software reused for more powerful Ariane 5
• Ariane 5 blew up shortly after first launch

– Cause: uncaught integer overflow exception caused 
software to terminate abruptly…

• 16-bit reg: flight trajectory’s horizontal velocity
– Ariane 4 – verified range of physically possible flight 

trajectories could not overflow variable, so no need for 
exception handler…

• Ariane 5’s rocket engine was more powerful, 
causing larger horizontal velocity to be stored into 
register triggering overflow…

– Losses of around $500 million


