
CS 161 Computer Security
Spring 2008 Dawn Song Notes 20
In this lecture we will explore some issues in implementing a digital form of cash - ecash. We normally
think of cash as paper money or coins issued by the treasury or a central bank. Can the assurances normally
assumed for cash be made to carry over to the digital domain in the form of a sequence of bits? To explore
some of the issues that arise in this context, let us consider a protocol involving three players: the customer,
the merchant and the bank. The outline of the protocol we would like to implement is as follows:

The customer, Alice, interacts with the bank to withdraw some cash. She then interacts with the merchant,
exchanging the cash for some goods. The merchant, Bob, then interacts with the bank to deposit the cash in
his account.

A first attempt at implementing this protocol might look like this:

1. The bank sends Alice a digital $1 bill. This might be a message signed with the bank’s RSA private key
saying ”serial number x. This is a $1 bill.”

2. Alice sends the cash to Bob in exchange for goods.

3. Bob later deposits the cash into his account at the bank.

There are several problems with this protocol.

• It is not anonymous. The bank gets to keep a record of all of Alice’s spending.

• Double spending. Since the cash is digital in nature, Alice can easily duplicate it and spend the same
$1 bill again with another merchant, Carol.

Blind Signatures:

One of the key building blocks to achieve anonymity is a blind signature. Recall that RSA signatures require
the signer to compute md mod N, where (d,N) is the private key and (e,N) is the public key.

A blind RSA signature is carried out as follows:

• Alice sends Bob s = (rem) mod N where r is a random number mod N.

• Bob computes t = sd mod N and sends the result to Alice.

• Alice computes t/r mod N = md mod N.

The point is that t = sd = (rem)d = rmd mod N. A blind signature allows Alice to obtain Bob’s signature on
a message of her choice, without Bob having any idea what the message being signed is.

Proposal 1:

Alice and the bank will use blind signatures to collectively create a $1 bill signed by the bank, but one which
the bank will not recognize as coming from Alice.

In this scheme, a valid $1 bill is a pair (x,y) where y = f (x)d mod N. Here f () is a one-way function (ideally
a one-way hash function). (e,N) is the bank’s public key and (d,N) is the private key.

CS 161, Spring 2008, Notes 20 1

• To withdraw the $1 bill, Alice picks x, computes f (x) and runs the blind signature protocol with the
bank on f (x). i.e. Alice picks a random r mod N, sends the bank s = re f (x) mod N. The bank sends
back t = sd mod N, and Alice recovers y = f (x)d = t/r mod N.

• To pay Bob $1, Alice sends him (x,y).

• When Bob later deposits (x,y), the bank checks that ye = f (x), and that (x,y) is not on its list of
previously deposited bills.

The main feature of this scheme is that the bank cannot connect the bill (x,y) with Alice, since the blind
signature was performed on a perfectly random string s.

The reason for the one-way function f () is to prevent forging. For example if instead a valid $1 bill were
(x,y) where y = xd mod N, then Alice could forge a bill by first picking y mod N and then computing
x = ye mod N. Instead, in the protocol presented above, y = f (x)d , and forging in this way would require
Alice to invert the one-way function. This is because when Alice selects y at random and encrypts it, she
obtains f (x), instead of x which she needs to successfully forge.

One way to create ecash with several denominations is for the bank to use different RSA keys to create
bills of different denominations. There is also an elegant way for the bank to achieve this while using the
same composite N, but different encryption exponents e for different denominations: e.g. e = 3 for nickels,
e = 5 for dimes, e = 7 for quarters, and e = 11 for dollar bills. One subtle point is that choosing e = 9 for
a dollar bill would be a mistake. This is because under this scheme (x,y) is a valid dollar bill whenever
y9 = f (x) mod N. Now, (x,z = y3) is a valid nickel, since z3 = y9 = f (x) mod N. Thus choosing e = 9
would allow Alice to forge an extra nickel for every dollar she withdraws from the bank. Choosing the
encryption exponents to be prime numbers gets around this potential problem.

One issue with this ecash scheme is that the bank has to be online at all times to identify bills, and the
merchant, Bob, must cash the bill immediately, in case Alice tries to double spend. These days this is not
considered a major problem, but for completeness we describe an offline scheme below.

”Offline ecash:”

The basic idea of this scheme is that instead of preventing double spending, it enables the bank to detect it.
If the user does not double spend, the bank does not learn her identity. If the user double spends, the bank
can compute her identity, and take suitable action.

• Alice generates 2k messages of the form f (xi) and f (xi⊕ Id), where xi is selected at random. Here
Id is identifying information about Alice. She sends all these values for blind signature to the bank.
The point of this construction is that revealing either xi or xi⊕ Id reveals nothing about Alice, but
revealing both completely gives away her identity. The rest of the protocol is designed to check that
Alice really does encode her true identity in these pairs, and that double spending reveals both of at
least one pair of messages with high probability.

• The bank asks Alice to unblind k randomly chosen pairs - by revealing the corresponding xi’s and
xi⊕ Id)’s and the random number ri used in the blinding protocol. The bank checcks the k chosen
pairs, and checks that Id really is Alice’s identifying information.

• If the k randomly chosen pairs check out, then the bank assumes that most of the remaining pairs must
also be correctly created (an event that holds with very high probability), and it signs them.

• Alice thus obtains blind signatures on k pairs of messages of the form: f (xi) and f (xi⊕ Id).

CS 161, Spring 2008, Notes 20 2

To pay the merchant, Bob, Alice goes through the following protocol with him:

• Alice sends Bob the k pairs of signatures: f (xi)d mod N and f (xi⊕ Id)d mod N).

• Bob sends k bits b1, . . . ,bk to Alice.

• If bi = 0, Alice sends Bob xi and if bi = 1, she sends him xi⊕ Id.

• Bob checks each against the signature, and accepts the bill only if they all check out.

To deposit the bill, Bob sends the bank the challenge sequence b1, . . . ,bk and Alice’s messages. If the coin
is double spent, the bank also gets a second set of challenges from another merchant. With probability
1−1/2k, the two challenge sequences differ on some bit, say the j− th. But now the bank has both x j and
x j⊕ Id. The bank can thus recover Id, which is the identity of the double spending Alice.

An issue that we must still address in the protocol given above is that Alice might double spend by permuting
the order of the signed pairs in a single bill, or by selecting signed pairs from several bills. This can be fixed
as follows: the 2k messages Alice generates in the first step now consist of a triple (f (zi), f (xi), f (xi⊕ Id)),
where zi is a random number in a sufficiently large range so that collisions are unlikely. When the bank asks
Alice to unbind k messages, she must reveal both xi and zi, and the bank checks that the zi are distinct from
each other and all previously chosen values in past bills. Finally, when Bob issues the challenge b1, . . . ,bk,
Alice must reveal zi in addition to either xi or xi⊕ Id. The point is that the zi’s provide unique identifiers for
the triples, that allow the bank to identify any triple that was used before. This allows the bank to correctly
reconstruct the Id of the double spender Alice.

CS 161, Spring 2008, Notes 20 3

