
1

Random Number Generation and Electronic Cash

Dawn Song
dawnsong@cs.berkeley.edu

2

Random Number Generation
• Many crypto protocols require parties to generate

random numbers
– Key generation
– Generating nonces

• How to generate random numbers?
– Step 1: how to generate truly random bits?
– Step 2: crypto methods to stretch a little bit of true

randomness into a large stream of pseudorandom
values that are indistinguishable from true random bits
(PRNG)

3

Case Study
• Random number generation is easy to get wrong
• Can you spot the problems in this example?

unsigned char key[16];

srand(time(null));
for (i=0; i<16; i++)

key[i] = rand() & 0xFF;

where

static unsigned int next = 0;
void srand(unsigned int seed) {

next = seed;
}

int rand(void) {
next = next * 1103515245 + 12345;
return next % 32768;

}

4

Real-world Examples
• X Windows “magic cookie” was generated using

rand()
• Netscape browsers generated SSL session keys

using time & process ID as seed (1995)
• Kerberos

– First discover to be similarly flawed
– 4 yrs later, discovered flaw with memset()

• PGP used return value from read() to seed its
PRNG, rather than the contents of buffer

• On-line poker site used insecure PRNG to
shuffle cards

5

Lessons Learned
• Seeds must be unpredictable

• Algorithm for generating pseudorandom bits
must be secure

6

Generating Pseudorandom Numbers

• True random number generator (TRNG)
– Generates bits that are distributed uniformly at

random, so that all outputs are equally likely, with
no patterns, correlations, etc.

• Cryptographically secure pseudorandom
number generator (CS-PRNG)

– Taking a short true-random seed, and generates
long sequence of bits that is computationally
indistinguishable from true random bits

7

CS-PRNG
• CS-PRNG: cryptographically secure

pseudorandom number generator
– G: maps a seed to an output G(S)

» E.g., G: {0,1}128 -> {0,1}1000000

– Let K denote a random variable distributed uniformly at
random in domain of G

– Let U denote a random variable distributed uniformly at
random in range of G

– G is secure if output G(K) is computationally
indistinguishable from U

• Sample construction
– Use the seed as a key k, and compute AES-CBC(k, 0n)

8

TRNG (I)
• TRNG should be random and unpredictable
• Good or bad choices?

– IP addresses
– Contents of network packets
– Process IDs
– High-speed clock
– Soundcard
– Keyboard input
– Disk timings

9

TRNG (II)
• How to convert non-uniform sources of

randomness into TRNG?
– Use a cryptographic hash function, such as SHA1
– Suppose x is a value from an imperfect source, or a

concatenation of values from multiple sources, and it
is impossible for an attacker to predict the exact value
x except with probability 1/2n

– Then hash(x) truncated to n bits should provide a n-bit
value that is uniformly distributed, if hash() is secure

10

Administrative Matters
• HW2 graded

Mean: 41.7
Standard deviation: 13.2
1st quartile: 39.8
2nd quartile (median): 44.5
3rd quartile: 50.0
Maximum: 57.0

11

Ecash
• Example for how crypto helps e-commerce
• Traditional cash

Alice
Customer

Bob
Merchant

Bank1. Withdraw cash

2. Spend cash for goods

3. Deposit cash

12

Ecash
• Digital form of cash
• First attempt, what’s the problem?

Alice
Customer

Bob
Merchant

Bank1. Withdraw ecash:
Signature($1, serial #)

2. Spend cash for goods:
Send Signature($1, serial #)

3. Deposit cash:
Send Signature($1, serial #)

13

Desired Properties for Ecash
• Anonymous: bank should not know how Alice

spends her money
• Prevent forging
• Prevent double spending

14

Building Block: Blind Signatures
• Blind signature: achieve anonymity

– How can Alice get a signature from the Bank without the Bank
knowing what message is being signed?

• Protocol:
– generating blind signature on message m in RSA setting
– Bank’s private key (d, p, q), public key (e, N)

– Alice computes t/r mod N = md mod N

Alice
Customer

Bank
s = rem mod N

t = sd mod N

15

Ecash Using Blind Signature
• How to use blind signature to build ecash?
• A valid $1 bill is a pair (x,y), where

y = hash(x)d mod N, hash() is one-way function
• How does the ecash protocol work?
• Why do we need hash()?
• How to prevent double spending?
• What to do for different denominations?

– Nickles, dimes, dollars

16

Other Methods for Ecash
• Use zero-knowledge proofs (out of scope)

– More building blocks of ZKP
– Support many properties

» Identifying double spenders

17

Conclusion
• Random number generator

– CS-PRNG
» Definition
» How to construct it?

– TRNG
• Ecash

– Example of the power of crypto
– Blind signatures

