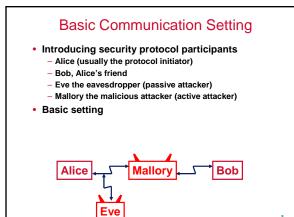
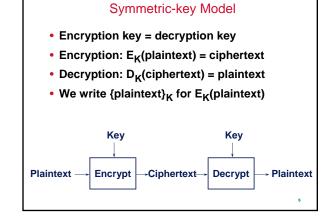
Symmetric-key Encryption

Dawn Song dawnsong@cs.berkeley.edu

Cryptology

- Cryptology is the study of Cryptography & • Cryptanalysis
- Cryptography
 - Literally:
 - Crypt: secret, graphia: writing---Cryptography: the study of how to send secret messages
 - Formally:
 - The study of mathematical techniques to enforce security properties: Confidentiality, integrity, etc.
- Cryptanalysis is the study of how to break • cryptographic systems

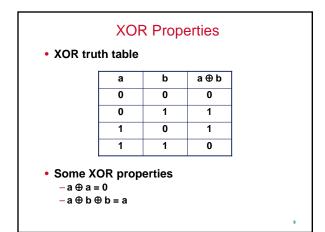

Brief History of Cryptography (I)


• First phase: manual

- Caesar cypher (Romans)
 - » Permute the alphabet by shifting each letter forward by a fixed amount
 - » Caesar cipher with a shift by 3:
 What's the original message for "fubswrjudskb"?
- Clearly not very secure
- Second phase: mechanical era
 - Enigma machine: a German project to create a mechanical encryption/decryption device
 - British effort to break the code
 - » Important for WWII, estimate shortening war by 1 year

Brief History of Cryptography (II)

- Third phase: Modern Cryptography
 - Relying on mathematics and electronic computers
 - Early roots by Claude Shannon
 - » E.g., One-time pad
 - DES by NIST (1970's)
 - -...


Threat Model

- Known ciphertext (ciphertext only) – Attacker only has a copy of some ciphertext
- Known plaintext
 - Attacker obtains ciphertext and corresponding plaintext
- Chosen plaintext
 - Attacker can choose plaintext that is going to be encrypted and obtains ciphertext
- Chosen Ciphertext
 - Attacker can choose ciphertext and obtains corresponding plaintext

One-time Pad

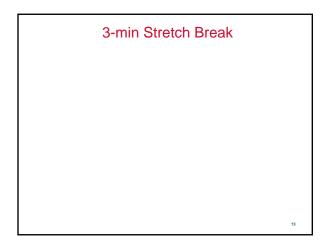
- Alice & Bob share an n-bit secret key K = K1...Kn, where bits K1,...,Kn chosen randomly
- Alice wishes to send n-bit msg M = M1...Mn
- Desired properties of the encryption scheme:
- Can encrypt: map M to C = C1...Cn
- Given knowledge of K, easy to decrypt: get M from C
- Eve, who doesn't know K, should learn no info about ${\rm M}$
- Encryption scheme: C = M ⊕ K

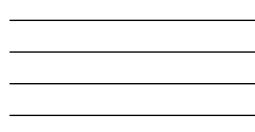
– Cj = Mj⊕ Kj

How Secure is One-time Pad?

• What may Eve learn about M by seeing C?

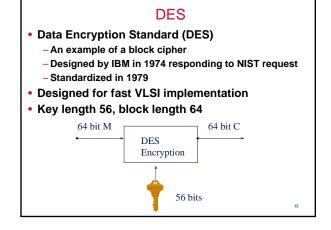
- What if Eve knew something about M apriori?
- Does Eve learn anything in addition?
- One-time pad is secure
 - Eve learns no additional info about M by seeing C
- No matter what M is, C is a uniformly random n-bit string
 Proof
 - For a given M, any C is possible by picking the unique K: K = M \oplus C
 - Each such K is equally likely
 - Thus C is equally likely to be any n-bit string

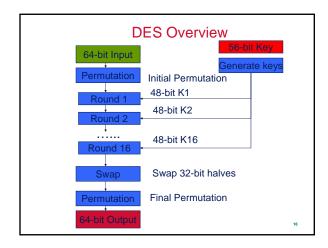

Disadvantage of One-time Pad

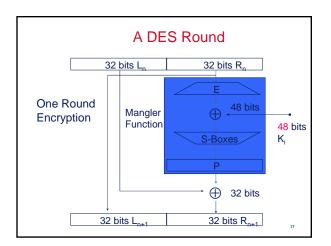

- K needs be the same length as the message & can't be reused
- What happens if reuse K?
 - $-C = M \oplus K$
 - C' = M' ⊕ K
 - Eve learns M ⊕ M'

Administrative Matters

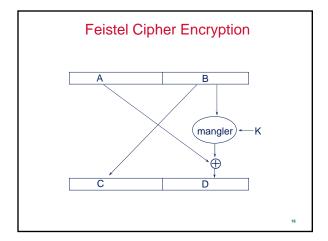
11

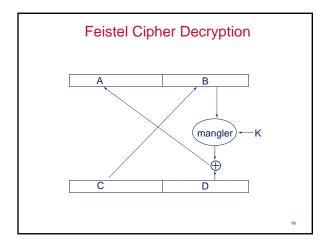

- Waitlist
- Assigned reading
- Discussion sections
- Mailing list vs. newsgroup




Block Cipher

- Alice & Bob share a k-bit random key K
- Encrypt an n-bit msg M into n-bit ciphertext C
- Encryption function E: - C = E(K, M)
- Decryption function D: - M = D(K, C)





Why Feistel?

- · So mangler function f doesn't need to be reversible -enc(A,B): C=B, D=A ⊕ f(B)

 - dec(C,D): B=C, A=D ⊕ f(C), because A ⊕f(B) ⊕f(B) = A
- DES is Feistel

How Secure is DES?

- · Best practical attack known is exhaustive key search - 2⁵⁵ (due to symmetry in key structure)
- 1977: Diffie & Hellman: \$20,000,000 machine that breaks DES key in 1 day
- 1993: Wiener: \$100,000 machine that breaks DES key in ٠ 1.5 days
- 1998: EFF's DES Cracker
 - EFF spent \$250,000 to build it
 - Tests 88*10⁹ keys per second
 - Solved DES Challenge II-2 in 56 hours
- 1999: DES Cracker + distributed.net (100,000 computers)
 - Tests 254*10⁹ keys per second - Solved DES Challenge III in 22 hours

Advanced Encryption Standard AES

- 1998 NIST announced a competition for a new cipher - DES block length is too short
- Winning cipher was Rijndael (pronounced Rhine-doll)
 - Belgian designers: Joan Daemen & Vincent Rijmen
 - Adopted by NIST as Advanced Encryption Standard (AES), Nov 2001
- Officially adopted for US government work, but voluntarily • adopted by private sector

- Block length 128, Key size: 128, 192, or 256
- AES is not Feistel - All functions are reversible
- High-speed cipher
 - About 16 clock cycles/byte on modern 32-bit CPUs - That's 200 MByte/s on a 3.2 GHz P4!