Asymmetric-key Encryption

Dawn Song dawnsong@cs.berkeley.edu

Review

- Introduction to cryptography
- Symmetric-key encryption
- One-time pad
- Block cipher
 - -DES
 - » Fiestel Networks
 - -AES

Today

- Stream ciphers
- Modes of operation for Block ciphers
- Administrative matters
- Modular Arithmetic
- 5-min break
- Asymmetric-key encryption

Stream Cipher

- · Pseudo-random generator
 - $-F(k,i) = r_i$
 - k is secret
 - Attacker cannot distinguish $r_{\text{1}}, r_{\text{2}}, \, \dots \, r_{\text{i}},$ from a sequence of random numbers
- Encrypt using stream ciphers
 - Alice and Bob share k
 - Alice wishes to send n-bit msg M = M1...Mn
 - -Ci = Mi ⊕ F(k,i)
 - Practical "one-time pad"

4

Block-cipher Modes of Operation

- · Block-cipher has fixed block size
- How to encrypt arbitrary length msgs using a block cipher?
- How to ensure the same plaintext when encrypted/sent twice, will result in different ciphertexts?
- · Different block-cipher modes of operation
 - Encryption scheme
 - » Randomized, i.e., flips a coin
 - » Stateful, i.e., depending upon state info
 - Decryption scheme
 - » Neither randomized nor stateful
 - » Why?

Examples of Block-Cipher Modes of Operation

• ECB: Electronic code book

• CBC: Cipher block chaining

· OFB: Output feedback

CTR: Counter mode

Electronic Code Book (ECB) Mode

- · Disadvantages and issues to note
 - Same plaintext always corresponds to same ciphertext
 - Traffic analysis yields which ciphertext blocks are equal → know which plaintext blocks are equal
 - Adversary can replace blocks with other blocks

Cipher Block Chaining (CBC) Mode

- C_j = { P_j ⊕ C_{j-1} }_K
 C₀ = IV (initialization vector)

- Issues to note
 - Altered ciphertext only influences two blocks

Output Feedback (OFB) Mode

- X₁ = IV (initialization vector)
- $X_j = \{ X_{j-1} \}_K$ $C_j = X_{j+1} \oplus P_j$

- Issues to note
 - Altered ciphertext only influences single block

Administrative Matters (I)

- New TA: Rusty Sears
- Office hours on-line
 - M-W, F
- HW1 out
- Computer accounts and facility support

11

Administrative Matters (II)

- In order to turn in HW1's programming assignment, you will need a named UNIX account.
- If you do not already have one, you can set it up in 273 Soda (or any other instructional computer lab)
- Log into a machine with the username "newacct" and password "newacct"
- You will need to provide your student ID
- It takes approximately one business day for new account requests to be processed
- · Contact TAs if you have problems

12

Modular Arithmetic

- a + b mod s
 - $-O(\log^2 s)$
- a*b mod s
 - -O(log² s)
- a^b mod s
 - how to compute a²⁵ mod s?
 - Repeated squaring
 - » a¹⁶ * a⁸ * a¹ mod s
 - $-O((\log^2 s) (\log b))$

13

Modular Division

- How to compute 1/a mod s?
- What does it mean?
 - $-ax \equiv 1 \mod s$
- Can it always be computed?
 - -iff gcd (a,s) = 1
- How?
 - Extended Euclidean algorithm

14

Euclidean Algorithm

- Compute gcd (a,b)
- Lemma If a > b, then gcd(a,b) = gcd (a mod b, b)
 - -Why?
- Euclid algorithm:
 - b≤ a,
 - Euclid (a,b) = Euclid (b, a mod b) if $b \neq 0$ or a if b = 0

15

Extended Euclidean Algorithm

- For any positive integers a, b, the extended Euclidean algorithm returns integers x, y such that ax + by = gcd (a,b)
- How to use it to compute x such that ax ≡ 1 mod s?
- gcd (a,s) = 1, thus can compute x, y s.t. ax + sy = 1
 - -Thus, $ax \equiv 1 \mod s$
- If u is relatively prime to s>u, then u has a multiplicative inverse modulo s, which can be found in O(log³ s)

6

Asymmetric-key Crypto

- Symmetric cryptography: both parties share the same key
 - Secret key (or shared key) only known to communicating parties
- Asymmetric cryptography: each party has a public and a private key
 - Public key known to everyone
 - Private key only known to owner
- Requirements for secure communication
 - Symmetric crypto: key is secret and authentic
 - Asymmetric crypto: private key is secret and public key is authentic

17

Advantage of Public-Key Crypto

- Consider N parties, how can any pair of them establish a secret key?
 - To use symmetric-key crypto, requires secret and authentic channel to set up shared secret key
 - Need O(N²) keys
 - Key management is challenging
- Public-key crypto advantage
 - Each party only needs to know N-1 authentic public keys

Asymmetric-key Encryption

- encryption-Key ≠ decryption-Key
- Alice has public key: pub_key, private key: priv_key
- Bob wants to send Alice message M
- C = E(pub_key, M);
- M = D(priv_key, C)

Asymmetric cryptography

- encryption-Key ≠ decryption-Key
- We cannot simply run operations backwards
- · Some things are hard to reverse
 - Often "hard" means "not in P"
 - Cryptanalysis is always easy in NP
 - Does P = NP?
- Multiplication
 - Easy to multiply two large primes
 - Hard to factor
 - Factoring up to 663 bits (200 digits) now demonstrated » Intensive computing; record set in May 2005
 - More efficient factoring methods unknown

Using hard problems to make crypto

- · Gauss (building on work by Fermat) proved
 - If p and q are primes and
 - If m is not a multiple of p or q
 - Then $m^{(p-1)(q-1)} = 1 \mod pq$
- Example, p=3, q=5, pq = 15, (p-1)(q-1) = 8
 - 1⁸ = 1 = 1 mod 15
 - 2⁸ = 256 = 1 mod 15
 - 48 = 65536 = 1 mod 15
 - 78 = 5764801 = 1 mod 15
 - 88 = 16777216 = 1 mod 15
 - 118 = 214358881 = 1 mod 15
 - 13⁸ = 815730721 = 1 mod 15
 - 14⁸ = 1475789056 = 1 mod 15