Digital Signature and Secret Sharing

Dawn Song dawnsong@cs.berkeley.edu

Review

- Hash functions
- Message authentication codes (MACs)
 - What security property is it designed to provide?
- Digital signatures
 - What security property is it designed to provide?

2

Today

- Sample constructions of digital signatures
- Secret sharing schemes
- Questionnaire

3

One-time Signature

- Lamport, 1979
- · Let h be a cryptographic hash function
- To sign a n-bit document m₀, ..., m_n, Alice picks
 - Private key: x_{i,0}, x_{i,1}
 - Public key: $y_{i,0} = h(x_{i,0}), y_{i,1} = h(x_{i,1})$
 - Signature: $s_i = x_{i,0}$ if $m_i = 0$; $x_{i,1}$ if $m_i = 1$
- · How to verify?
- What's the security of this scheme?
 - How many messages can Alice sign with the same public key

RSA Signature

• Idea:

- -Let p, q be large secret primes, N = pq
- Given e, find d, such that ed = 1 mod $\phi(N)$, where $\phi(N)=(p-1)(q-1)$
- -public key: e, N
- private key: d, p, q
- Signature: $s = h(m)^d \mod N$
- Verification: se ?= h(m) mod N
- What if h is not collision-resistant?
- In practice, RSA-PKCS (public-key cryptography standards)

ElGamal Signatures & DSA (I)

- RSA signing: similar to "encryption with a private key"
- · ElGamal signing is different
 - Relates to zero-knowledge proofs (later in class)
- Set up: Let
 - p be a large prime
 - g be an integer of order p-1 mod p
 - a be private key, public key y = g^a
- To sign m, Alice
 - picks a random number k, s.t. gcd(k, p-1) = 1
 - Computes $r = g^k \mod p$
 - Solves s such that $a*r + k*s \equiv m \mod p-1$
 - Signature = (r,s)

ElGamal Signatures & DSA (II) • Recall: a be private key, public key y = ga • To sign m, Alice - picks a random number k, s.t. gcd(k, p-1) = 1 - Computes $r = g^k \mod p$ - Solves s such that $a*r + k*s \equiv m \mod p-1$ – Signature = (r,s) · How to verify? - y' r's ?= g'' mod p • What is the security of the scheme? - Homework 2 • In practice, Digital Signature Algorithm (DSA) **Administrative Matters** Homework 1 due Homework 2 out Everyone should have gotten class accounts by now Group signup is done - Anyone who still has issues should come see me after svn will be set up next week 2-minute Break

How do we know a public key?

- One approach the big directory (white pages)
 - Need to make secure big directory
 - Need to keep it updated
- Better approach: allow one party to attest to another
 - Public key infrastructure (PKI)
 - Public key certificate (PKC)
 - Certificate authority (CA)

10

A hypothetical public-key hierarchy

Rusty Sears' public key is ... Love, Arnold Schwarzenegger Digitally signed by AS

11

A hypothetical public-key hierarchy

Arnold Schwartzenegger's public key is ...
Love, George Bush Jr.

Digitally signed by W

Rusty Sears' public key is ... Love, Arnold Schwarzenegger Digitally signed by AS

12

A hypothetical public-key hierarchy George Bush Jr.'s public key is ... Love, Kofi Annan Digitally signed by Kofi Arnold Schwartzenegger's public key is ... Love, George Bush Jr. Digitally signed by W Rusty Sears' public key is ... Love, Arnold Schwarzenegger Digitally signed by AS

Replay attacks

- Cryptosystems are vulnerable to replay attacks
- Record message; playback later identically - "Yes"/"No"
- Solution: use nonces (random bits; timestamp) etc.
 - Freshness property
- Message is <text, timestamp>

14

Secret Sharing

- A trusted authority TA has a secret K
- Wants to split K into n shares S1, ..., Sn, distributing to n users U1,...,Un respectively, s.t.
 - A reconstruction algorithm can be used to efficiently reconstruct K from any t of the n shares
 - Any t-1 of the n shares reveal no information about K
- Such a scheme is called an (n,t) threshold secret sharing scheme

15

(n,n) Secret Sharing Scheme

- Suppose the secret K is an integer btw 0 and M-1
- (n,n) threshold scheme:
 - Pick $S_1,...,S_{n-1}$ uniformly at random btw 0 and M-1 Set S_n = K- (S_1 + ... + S_{n-1}) mod M
- How to reconstruct K?
- · What happens if n-1 users get together?