Digital Signature and Secret Sharing

Dawn Song
dawnsong@cs.berkeley.edu

Review

» Hash functions

» Message authentication codes (MACs)
—What security property is it designed to provide?

« Digital signhatures
—What security property is it designed to provide?

Today

« Sample constructions of digital signatures
* Secret sharing schemes

¢ Questionnaire

One-time Signature

e Lamport, 1979

» Let h be a cryptographic hash function

* To sign a n-bit document my, ..., m,, Alice picks
—Private key: X; ¢, X1
—Public key: y; o = h(X;), ¥i1 = h(X;,)

—Signature: s;= X if m;=0;
X ifm=1

* How to verify?

* What's the security of this scheme?

—How many messages can Alice sign with the same
public key

RSA Signature

* Idea:
—Let p, q be large secret primes, N = pq
—Given g, find d, such that ed =1 mod ¢(N), where
$(N)=(p-1)(q9-1)
—public key: e, N
—private key: d, p, q
—Signature: s =h(m)d mod N
—Verification: s® ?=h(m) mod N
e What if h is not collision-resistant?
* In practice, RSA-PKCS (public-key cryptography
standards)

ElGamal Signatures & DSA (1)

* RSA signing: similar to “encryption with a
private key”
« ElGamal signing is different
—Relates to zero-knowledge proofs (later in class)
e Set up: Let
—p bealarge prime
—g be an integer of order p-1 mod p
—abe private key, public key y = g2
e To sign m, Alice
—picks arandom number k, s.t. gcd(k, p-1) =1
—Computes r =gkmod p
—Solves s such that a*r + k*s =m mod p-1
—Signature = (r,s)

ElGamal Signatures & DSA (1)

* Recall: a be private key, public key y = g2
e To sign m, Alice
—picks arandom number k, s.t. gcd(k, p-1) =1
—Computes r =gkmod p
—Solves s such that a*r + k*s = m mod p-1
—Signature = (r,s)
* How to verify?
—-y'rs?=g™mod p
* What is the security of the scheme?
—Homework 2
« In practice, Digital Signature Algorithm (DSA)

Administrative Matters

Homework 1 due
Homework 2 out

Everyone should have gotten class accounts by
now
Group signup is done

—Anyone who still has issues should come see me after
class

svn will be set up next week

2-minute Break

How do we know a public key?

* One approach —the big
directory (white pages)

— Need to make secure big @ .
directory T, T
— Need to keep it updated R

AW s penerated |
Generaie | i
(Sotnemie mgnteg | — L L P
Krquest (C38) 7| Disstimguished Name.

« Better approach: allow one i
party to attest to another (Ceernens '}_‘F:’ i
— Public key infrastructure (PKI) Pt e |
— Public key certificate (PKC) Hepiday i de;:;n‘i.ﬁ‘j
— Certificate authority (CA) fraestor, which || e wared localty.

A hypothetical public-key
hierarchy

A hypothetical public-key
hierarchy

A hypothetical public-key
hierarchy

Replay attacks

« Cryptosystems are vulnerable to replay attacks

* Record message; playback later identically
—“Yes"/“No”

e Solution: use nonces (random bits; timestamp)
etc.

—Freshness property

* Message is <text, timestamp>

Secret Sharing

e A trusted authority TA has a secret K
* Wants to split K into n shares S1, ..., Sn,
distributing to n users U1,...,Un respectively, s.t.

—A reconstruction algorithm can be used to efficiently
reconstruct K from any t of the n shares

—Any t-1 of the n shares reveal no information about K

e Such a scheme is called an (n,t) threshold secret
sharing scheme

(n,n) Secret Sharing Scheme

Suppose the secret K is an integer btw 0 and M-1
(n,n) threshold scheme:
— Pick S;,...,S,,; uniformly at random btw 0 and M-1
—SetS,=K-(S;+... +S,) mod M
How to reconstruct K?
What happens if n-1 users get together?

