Secret Sharing and Zero-knowledge Proofs

Dawn Song dawnsong@cs.berkeley.edu

Review

- Digital signatures
 - What security properties is it designed to provide?
 - One-time signature
 - RSA signature
 - ElGamal signature
- Secret-sharing schemes

2

Secret Sharing

- A trusted authority TA has a secret K
- Wants to split K into n shares S1, ..., Sn, distributing to n users U1,...,Un respectively, s.t.
 - A reconstruction algorithm can be used to efficiently reconstruct K from any t of the n shares
 - Any t-1 of the n shares reveal no information about K
- Such a scheme is called an (n,t) threshold secret sharing scheme

3

(n,n) Secret Sharing Scheme

- Suppose the secret K is an integer btw 0 and M-1
- (n,n) threshold scheme:
- Pick S₁,...,S_{n-1} uniformly at random btw 0 and M-1
- Set S_n = K- (S₁ + ... + S_{n-1}) mod M
- How to reconstruct K?
- · What happens if n-1 users get together?

.

(n,t) Threshold Scheme

- Polynomials modulo prime p
 - Polynomials whose coefficients are elements mod p
 - -E.g., $f(x) = x^2 + 2x + 4 \mod 5$
 - Degree-n polynomial f (mod p) is uniquely determined by any n+1 distinct pairs (x_i, y_i) s.t. $f(x_i) = y_i$
 - » Lagrange interpolation
- To (n,t) threshold share secret K:
 - Pick a random polynomial f (mod p) of degree t-1 s.t. f(n) = K
 - Share $s_i = f(i)$ for i = 1 to n
 - How to recover K?
 - How many shares do you need to recover K?
 - -What happens if you have fewer shares than t?

5

Zero-knowledge Proof

- Alice->Bob: I know the solution to Que 3 in hw 2, but I can't tell you what the solution is
- · Bob->Alice: tell me, o.w. I don't believe you
- Alice->Bob: Ok, I'll prove to you that I know the solution in Zero-knowledge

6

Zero-knowledge protocol

- Idea: (interactive) proof btw prover A & verifier B
- At the end of the proof, B is convinced A knows a secret satisfying a fact F
- But B has no information about that secret

The Zero-knowledge Cave (I)

Alice wants to prove to Bob that she knows how the magic word to open door

- Without telling Bob the magic word

The Zero-knowledge Cave (II)

- Alice walks to either C or D;
 Bob stands at V, calling either Left or Right;
 Alice complies, using her magic word to open door if needed;
 Alice & Bob repeats steps 1-3 for n times

The Zero-knowledge Cave (III)

- . What if Alice didn't know the magic word?
- What does Bob learn at the end of the proof?

How to prove knowledge of square root

- Finding square root mod N=pq is as hard as factoring
 A knows b s.t. b²=y mod pq, & wishes to prove to B that she knows such b.
- A \rightarrow B: s =: $r^2 \mod pq$ (A picks random r)
- B flips coin
- B → A: coin flip
- If heads
 - $-A \rightarrow B: t =: r \mod pq$
 - -B verifies t² = s mod pq
- If tails
 - $-B \rightarrow A$: t =: rb mod pq
- A verifies t² ≡ sy mod pq

 What if A didn't know the square root?

 What did B learn after the proof?

Conclusion

- · Secret-sharing schemes
 - (n,t) threshold schemes using polynomials
- · Zero-knowledge proofs
 - Concepts
 - Zero-knowledge proof of square root