
1

Zero-knowledge Proofs and Authentication

Dawn Song
dawnsong@cs.berkeley.edu

2

Review
• Secret-sharing

– How does a (n,t) threshold secret sharing scheme
work?

• Zero-knowledge proof

3

How to prove knowledge of square root (I)
• Finding square root mod N=pq is as hard as factoring
• A knows b s.t. b2 =y mod pq, & wishes to prove to B

that she knows such b.
• A → B: s =: r2 mod pq (A picks random r)
• B flips coin
• B → A: coin flip
• If heads

– A → B: t =: r mod pq
– B verifies t2 ≡ s mod pq

• If tails
– A → B: t =: rb mod pq
– B verifies t2 ≡ sy mod pq

• What if A didn’t know the square root?
• What did B learn after the proof?

4

How to prove knowledge of square root (II)

• What if A could predict B’s coin flip?

• What if A reuses random number r in different
rounds?

• How is B convinced that A does know the square
root?

– Knowledge extractor

• Why is B not learning anything about the square
root?

– Simulator argument (out of scope)

5

Administrative Matters
• Hw1 statistics:

Mean: 34.6
Standard deviation: 10.8
1st quartile: 29.0
2nd quartile (median): 34.0
3rd quartile: 44.0
Maximum: 54.0

6

Authentication
• Alice and Bob love each other, but they live far apart
• We’ve learned how they can encrypt their messages
• How can they make sure they are talking to each other?
• This is the question of authentication

7

Types of authentication

• End user → End user (Alice & Bob)
• End user → Local computer (login)
• End user → Remote computer (web site login)
• Computer → Computer (DRM)
• Local computer → End user (fake ATM check)
• Remote computer → End user (phishing check)

8

Basic Security Protocols
• Entity authentication protocols

– Prove identity to each other
• Key establishment/agreement/distribution protocols

– Establish a trusted session key between two principals
– Usually used to set up trusted communication channel

providing secrecy and authenticity
• Other protocols: secure e-commerce, e-voting, time

synchronization, etc.
• We use our basic cryptographic primitives to design

higher-level security properties

9

Protocol Design Basics
• Protocols involve principals, e.g., hosts, users, services,

processes
• Secret information, e.g., symmetric keys, private keys
• Authentic information, e.g., public keys
• Basic cryptographic primitives: public-key crypto, block cipher,

stream cipher, hash function, MAC, digital signatures, zero-
knowledge proofs

• Trusted entities
• Proofs of freshness, e.g., nonces and timestamps

– NONCE = Number used only ONCE
– Two types of nonces

» Counter: unique (non-repeating) but predictable, may use a time stamp for
this purpose

» Random number: unique and unpredictable

10

“Ideal” Protocol Wish List
• Efficient protocol

– Low computation overhead
– Low communication overhead

• As little trust as necessary
• As few assumptions as necessary

– Idealized encryption???
– Synchronized clocks?
– Synchronized sequence numbers?
– Randomly selected nonces and IVs?
– Security of crypto primitives?
– Authenticity or secrecy of keys?

• Little client/server state

11

Protocol Analysis

• Analyze high level security properties
– Secrecy
– Authentication
– Atomicity
– Non-repudiation

• Assume cryptographic primitives secure
– Signature: secure against existential forgery
– Public key/Private key encryption:

secure against adaptive chosen-ciphertext attack
• Security protocols are notoriously hard to get right

12

Active Attacker
• An active attacker may

– Eavesdrop on previous protocol runs, even
on protocol runs by other principals, replay
messages at a later time

– Inject messages into the network, e.g.,
fabricated from pieces of previous messages

– Alter or delete a principal’s messages
– Initiate multiple parallel protocol sessions
– Run dictionary attack on passwords
– Run exhaustive attack on low-entropy nonce

13

Intruder Model

Client A

Client B

Client C

Server X

Server Y

Client D

Intruder can
• Intercept, drop, generate messages, full control of network
• Collude with malicious parties

14

Example: Needham-Schroeder Protocol

Client
C

Server
S

{Nc, C}KS

{Nc, Ns}KC

{Ns}KS

• KS , KC are public keys of S and C respectively
• Goal:

– Mutual authentication: C→S, S→C
– Shared secret: Nc , Ns

15

Flaw in Needham-Schroeder

Client
C

Server
S

{Nc, C}KE {Nc, C}KS

{Nc, Ns}KC{Nc, Ns}KC

E

Flaw (discovered 18 years after publication):
• Authentication: C→E, S→C
• Secrecy: E knows Nc , Ns
• How to fix it?

– The second message should be {S, Nc, Ns}KC

{Ns}KE {Ns}KS

