
1

Authentication and Random Number Generation

Dawn Song
dawnsong@cs.berkeley.edu

2

Review
• Zero-knowledge proof

– Challenge-response
– Knowledge extractor

• Protocols for authentication and key agreement
– Need careful design

3

Diffie-Hellman Key Agreement
• Public values: large prime p, generator g

• Alice picks secret random value a, sends ga

• Bob picks secret random value b, sends gb

• Result: A & B compute shared key gab

Alice Bob

ga

gb

4

Diffie-Hellman Assumption
• large prime p, generator g

• Computational Diffie-Hellman assumption:
Given ga , gb , it is hard to compute gab

• Decisional Diffie-Hellman assumption:
Given ga , gb , it is hard to distinguish between
gab and a random element r (in mod p)

• Related to Discrete Log problem, but not
known to be equivalent

5

Man-in-the-middle Attack for DH Key Agreement

Alice Bob

ga
gz

gb

gx

E

Attack:
• A & B may believe they share a session key,

but in fact, A & E share gax , B & E share gbz

• How to fix it?

6

Station-to-Station Protocol (STS)

Alice Bob

ga

gb, {sigSB(gb, ga)}K

{sigSA(ga, gb)}K

• sigSA , sigSB represent signatures of A &
B

• Session key K = gab

7

Kerberos Protocol
• Involves a server
• A & S share KAS, B & S share KBS, L is the

lifetime of the ticket, TA is timestamp referring
to A’s clock, na is a nonce generated by A

• 1 A S: A, B, na

• 2 S A: { KAB , na,L, B }KAS
, { KAB ,

A, L }KBS

• 3 A B: { KAB , A, L }KBS
, { A, TA

8

Administrative Matter
• Office hour this week moves to tomorrow 4pm
• svn ready
• Project description out

9

Random Number Generation
• Many crypto protocols require parties to generate

random numbers
– Key generation
– Generating nonces

• How to generate random numbers?
– Step 1: how to generate truly random bits?
– Step 2: crypto methods to stretch a little bit of true

randomness into a large stream of pseudorandom
values that are indistinguishable from true random bits
(PRNG)

10

Case Study
• Random number generation is easy to get wrong
• Can you spot the problems in this example?

unsigned char key[16];

srand(time(null));
for (i=0; i<16; i++)

key[i] = rand() & 0xFF;

where

static unsigned int next = 0;
void srand(unsigned int seed) {

next = seed;
}

int rand(void) {
next = next * 1103515245 + 12345;
return next % 32768;

}

11

Real-world Examples
• X Windows “magic cookie” was generated using

rand()
• Netscape browsers generated SSL session keys

using time & process ID as seed (1995)
• Kerberos

– First discover to be similarly flawed
– 4 yrs later, discovered flaw with memset()

• PGP used return value from read() to seed its
PRNG, rather than the contents of buffer

• On-line poker site used insecure PRNG to
shuffle cards

12

Lessons Learned
• Seeds must be unpredictable

• Algorithm for generating pseudorandom bits
must be secure

13

Generating Pseudorandom Numbers

• True random number generator (TRNG)
– Generates bits that are distributed uniformly at

random, so that all outputs are equally likely, with
no patterns, correlations, etc.

• Cryptographically secure pseudorandom
number generator (CS-PRNG)

– Taking a short true-random seed, and generates
long sequence of bits that is computationally
indistinguishable from true random bits

14

CS-PRNG
• CS-PRNG: cryptographically secure

pseudorandom number generator
– G: maps a seed to an output G(S)

» E.g., G: {0,1}128 -> {0,1}1000000

– Let K denote a random variable distributed
uniformly at random in domain of G

– Let U denote a random variable distributed
uniformly at random in range of G

– G is secure if output G(K) is computationally
indistinguishable from U

15

TRNG (I)
• TRNG should be random and unpredictable
• Bad choices

– IP addresses
– Contents of network packets
– Process IDs

• Some sources of randomness
– High-speed clock
– Soundcard
– Keyboard input
– Disk timings

16

TRNG (II)
• How to convert non-uniform sources of

randomness into TRNG?
– Use a cryptographic hash function, such as SHA1
– Suppose x is a value from an imperfect source, or a

concatenation of values from multiple sources, and it
is impossible for an attacker to predict the exact
value x except with probability 1/2n

– Then hash(x) truncated to n bits should provide a n-
bit value that is uniformly distributed

17

Conclusion
• Authentication & key-agreement

– If not well designed, attacker can impersonate, learn
session key, etc.

– Diffie-Hellman key agreement
– Kerberos key agreement
– Need to be able to detect attacks in flawed protocols

• Random number generation
– Common mistakes
– TRNG & CS-PRNG

