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Abstract

Traditionally, techniques for computing on encrypted
data have been proposed with privacy preserving applica-
tions in mind. Several current cryptosystems support a ho-
momorphic operation, allowing simple computations to be
performed using encrypted values. This is sufficient to real-
ize several useful applications, including schemes for elec-
tronic voting [16, 12, 17] and single server private infor-
mation retrieval (PIR) [19, 9]. In this paper, we introduce
an alternative application for these techniques in an unex-
pected setting: malware. We point out the counterintuitive
possibility of malware which renders some aspects of its be-
havior provably resistant to forensic analysis, even with full
control over the malware code, its input, and its execution
environment. While methods for general purpose computa-
tion on encrypted data have not yet been realized, we ex-
plore the potential use of current techniques. Specifically,
we consider in depth the possibility of malware which em-
ploys private information retrieval techniques to find and
retrieve specific pieces of sensitive information from com-
promised hosts while hiding its search criteria. Through an
evaluation of the goals of attackers and the constraints un-
der which they operate, we determine that PIR techniques
are an attractive technology to malware authors with the
potential to increase the threat of targeted espionage. We go
on to demonstrate the present feasibility of PIR-based mal-
ware through a series of experiments with a full implemen-
tation of a recent private stream searching scheme. Through
the example of PIR-based malware, we highlight the more
general possibilities of computing on encrypted data in a
malicious setting.

1 Introduction

Malware analysis is an important process which can help
guide an appropriate response to a security breach or re-
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veal the motivations of the malware author. Currently, mal-
ware authors employ a host of methods to frustrate anal-
ysis, thereby extending the malware lifespan and conceal-
ing their aims. These analysis resistance techniques include
code obfuscation, self-checking and self-modifying code,
polymorphism, and metamorphism [11, 21]. A number of
worms specifically attempt to detect the presence of debug-
ging tools and alter or terminate operation [30]. These tech-
niques have triggered an arms race between increasingly
powerful analysis and reverse engineering tools [30] and
ever more clever techniques on the part of malware authors.

Despite the sophistication exhibited by many pieces of
recent malware, theoretical results suggest that malware au-
thors are fighting a losing battle in this arms race. Secure
obfuscation for general programs is not possible due (at
least) to contrived classes of programs that are impossible
to obfuscate [2], and recent results have further shown that
many natural, interesting classes of programs are also im-
possible to obfuscate [14].

However, an alternative approach exists for malware to
hide certain aspects of its behavior. Several related crypto-
graphic notions known variously as public key program ob-
fuscation [22] and cryptocomputing [26] concern the trans-
formation of a program into an “encrypted” representation
that provably hides the function it computes while still al-
lowing execution of the program. The key difference in this
model is that the output of the encrypted program is unintel-
ligible to the party executing the program, and can only be
transformed into the actual output with the help of an auxil-
iary private key (kept by the originator of the program). The
negative results on program obfuscation do not apply in this
case, since they require an obfuscated program to produce
the same output as the original.

Unlike current methods [11] for program obfuscation,
which at best delay analysis, schemes within the public
key obfuscation model allow provable security. While gen-
eral purpose public key program obfuscation is an unsolved
problem and current methods for cryptocomputing are only
effective for small circuits, efficient solutions to more spe-
cialized problems are available. In particular, a number of
schemes based on homomorphic encryption have been pro-
posed for the problem of single server private information
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Figure 1. Malicious usage of public key program obfuscation.

retrieval (PIR), which may be viewed as a special case of
public key obfuscation. A PIR scheme allows a client to
retrieve an entry xi from a database (x1, x2, . . . xn) on an
untrusted server while preventing the server from learning
which entry i they retrieved. This may be trivially accom-
plished by sending the entire database to the client, but PIR
schemes generally provide reduced communication com-
plexity (e.g., O(

√
n) or O(log n) rather than O(n)). Further

extensions and variations allow keyword based search and
retrieval of documents [10] and operation within a stream-
ing model [22]. From the malware author’s perspective,
such schemes may be useful for retrieving sensitive docu-
ments or system information by keyword while hiding the
search criteria. In this case, the malware author would play
the role of the client, and the compromised host would act
as the server.

Contributions. In this paper, we introduce the general
threat of public key program obfuscation or cryptocomput-
ing techniques employed in a malicious setting, considering
in particular PIR-based malware as an example of currently
feasible techniques within this model. Specifically, we pro-
vide the following contributions.

• The introduction of the possibility of public key pro-
gram obfuscation techniques employed in a malicious
setting.

• A detailed evaluation of the goals of targeted malware
authors which suggests that PIR-based malware is at-
tractive for malicious purposes.

• The first publicly released implementation of a pri-
vate stream searching system and experimental results
demonstrating its use is currently feasible.

• Additional results on the potential for distributed use
of PIR by worms.

Organization. In Section 2 we discuss the general crypto-
graphic framework and tools available to a malware author,

including public key obfuscation, cryptocomputing, homo-
morphic encryption, and PIR. In Section 3 we explore the
goals of the malware author and evaluate the utility of PIR-
based malware in particular, and in Section 4 we give ex-
perimental results demonstrating the present technical fea-
sibility of PIR-based malware. In Section 5 we give a high-
level discussion of the implications of these possibilities and
countermeasures before concluding in Section 6. Related
work is given throughout, especially in Section 2. We also
give consideration to an additional, more speculative sce-
nario for malicious use of PIR in Appendix C; reading this
section is not essential for understanding the rest of the pa-
per.

2 Analysis Resistance via Cryptography

We now survey several cryptographic definitions and
tools and discuss how they may be used by malware authors
interested in preventing analysis of their malware.

2.1 Framework: Public Key Obfuscation

When defining the problem of private stream search-
ing, Ostrovsky and Skeith also introduced the more gen-
eral problem of public key program obfuscation [22]. Infor-
mally, we may consider a scheme for public key obfuscation
to consist of a space of relevant programs C and two prob-
abilistic algorithms Compile and Decrypt. The Compile al-
gorithm takes a program A ∈ C and returns an “encrypted”
version Aenc along with a private key K. The Decrypt al-
gorithm processes an output from the encrypted program
using the private key to “decrypt” the output. We require
two properties:

Correctness
Let A ∈ C and (Aenc,K) = Compile(A). Then for all
x, we require that Decrypt(Aenc(x),K) = A(x).



Hiding
In the absence of K, Aenc should reveal nothing about
A beyond that it is in C. More precisely, we define a
game between an adversary B and a challenger C.

1. B chooses two programs A0, A1 ∈ C and sends
them to C.

2. C flips a coin b ∈ {0, 1}, computes (Aenc,K) =
Compile(Ab), and sends Aenc to B.

3. B outputs a guess b′.

We define the advantage of an adversary B as a func-
tion of the security parameter k (elsewhere omitted
from the notation) to be AdvB(k) = |Pr(b = b′)− 1

2 |.
We require that AdvB(k) be a negligible function for
all PPT’s B.

Note that in order for the hiding property to be satisfied, it
is essential that Compile be a probabilistic algorithm with
many potential encrypted representations for each program.
For more rigorous definitions the reader should refer to [22];
these intuitive notions will suffice for our purposes. The in-
terested reader may also wish to review the largely equiva-
lent notion of cryptocomputing [26].

Example. This framework is depicted in a malicious con-
text in Figure 1. Here, M ∈ C is a piece of malware that is
encrypted to produce Menc, which is run on a compromised
machine. The algorithm Compile hides certain character-
istics of M ; namely, those that distinguish it from other
members of C. However, in the process the output is ren-
dered unusable. This output Menc(x1, . . . xn) must now be
returned to the malware author and given to Decrypt along
with K before the actual output M(x1, . . . xn) may be dis-
cerned. Note that Menc may also be permitted to produce
some unencrypted outputs, provided every other member of
C produces them in the exact same way.

As an example, one may imagine M to be a host-based
vulnerability scanner. The program M inspects various as-
pects of the host’s configuration, then processes this infor-
mation according to a list of rules for detecting various soft-
ware and configuration vulnerabilities, ultimately produc-
ing a concise summary of the resulting discoveries. In this
case, the malware author may wish to hide the scanning cri-
teria and vulnerability detection logic to ensure the contin-
ued secrecy of valuable 0-day vulnerabilities.

Discussion. It is important to remain clear on the relation-
ship between C, the output and behavior of Menc, and pre-
cisely which characteristics of M are hidden. In the exam-
ple of the vulnerability scanner, an analyst observing Menc
will certainly see which data x1, . . . xn it reads on the re-
mote host. The best we can do, then, is to take C to be the
set of programs which read this data, perform some compu-
tation, and return resulting values (of a particular size) over

the the network, and then we will hide the nature of the
computation which M performs. This ability could be sur-
prisingly useful. If x1, . . . xn is an extremely large, general
set of inputs (e.g., the contents of all program binaries, li-
braries, the kernel, configuration files, and sniffed network
traffic), the malware analyst observing Menc will have es-
sentially no information about the vulnerabilities the mal-
ware may have been looking for. If M had run, however,
the analyst would find the same vulnerabilities on the sys-
tem that M had, and be able to respond by patching them. In
general, one should keep in mind that it will not be possible
to hide any characteristics of the malware that inherently
must affect its control flow or output that is not to be re-
turned to the author (i.e., local changes to the compromised
host).

Another point to understand is that a scheme for pub-
lic key obfuscation provides malware with genuinely new
abilities, beyond what is possible through other approaches.
One may imagine malware taking the more simplistic ap-
proach of reading its inputs and performing the necessary
computations in the clear, then encrypting the output with
an embedded public key before sending it over the network.
The source of the malware (who has the corresponding pri-
vate key) would be able to decrypt the returned output. In
this case, the output of the malware would be hidden from
anyone monitoring the network. However, this approach
does nothing to prevent an analyst with access to the host
on which the malware is running from observing what it is
computing and sending back. A malware author who in-
tends to hide the information they seek and how it is to be
derived from data on the compromised host must assume
that the malware’s code and execution environment will be
analyzed upon detection.

2.2 Present Techniques: Homomorphic Encryp-
tion

Public key obfuscation schemes for fully general classes
of programs C do not yet exist. However, methods are avail-
able for more specialized classes. We now discuss these
methods and what may be accomplished using them.

Essentially all work in this framework so far has been
based upon the use of homomorphic cryptosystems. Sup-
pose for some public key cryptosystem we have a space of
plaintexts P , a space of ciphertexts C, and an encryption
function (for a particular public key) E : P → C. Then
we say that the cryptosystem supports a homomorphism
f : Pn → P if there exists an operation f ′ : Cn → C
such that

f ′(E(x1), E(x2), . . . E(xn)) = E(f(x1, x2, . . . xn))

for all x1, . . . xn ∈ P . More precisely, we should say that

D(f ′(E(x1), E(x2), . . . E(xn))) = f(x1, x2, . . . xn) ,



since E will typically be a probabilistic function. Here D :
C → P is the private decryption algorithm corresponding
to E.

Such a homomorphism allows one to perform the opera-
tion f on encrypted values and obtain an encryption of the
result, thus enabling computation on encrypted data. This
provides the essential building block for realizing schemes
in the framework of public key obfuscation. Generally
speaking, the algorithm Menc may encrypt its input values
with an embedded public key, and then perform its compu-
tations by using an operation f ′ : Ck → C on them along
with (already encrypted) embedded constants.

Several cryptosystems support a single homomorphic
group operation, including ElGamal [13], Goldwasser-
Micali [15], and Paillier [25]. The more sophisticated cryp-
tosystem of Boneh, Goh, and Nissim supports arbitrary ad-
ditions of plaintexts and a single multiplication [6]. Un-
fortunately, no known cryptosystem supports homomorphic
operations that are sufficient to realize general computa-
tion on encrypted data [24]; finding such a cryptosystem
or demonstrating that they do not exist is a long standing
and important open problem. A notable partial exception
is the scheme of Sander, Young, and Yung, which supports
both boolean OR and NOT, which are sufficient for general
computation [26]. However, in this scheme the ciphertext
size doubles after every operation, so only small numbers
of operations are feasible.

Cryptosystems supporting a single homomorphic group
operation are, however, sufficient for a number of useful
applications. In particular, they are sufficient to solve the
problem of private information retrieval. As an example, we
give in Appendix A a simple PIR scheme with O(

√
n) com-

munication complexity using a generic construction given
in [23], instantiated with the Paillier cryptosystem. The
example serves to illustrate the usage of homomorphic en-
cryption and shares the flavor of more advanced construc-
tions for PIR. Readers that have not previously seen a con-
struction for PIR may find it enlightening. The example
also provides a more concrete illustration of the definitions
for public key program obfuscation.

More sophisticated approaches to PIR allow search
based on keywords rather than array indices [10] and
operation on a sequence of documents with no a priori
bound [22], dubbed private stream searching. Throughout
the rest of the paper, we will generally assume the use of
a scheme for keyword based private stream searching, as
this variant of PIR offers more flexibility. A query will then
take the form of a list of keywords rather than an index i,
and we will assume that it can be matched against an ar-
bitrary number of documents one by one, updating a fixed
length, encrypted buffer of current results after each.

2.3 Properties Offered

In both the general case of public key obfuscation and
the specific problem of PIR, it is possible to trivially achieve
the hiding property by simply retrieving the entire set of in-
puts x1, x2, . . . xn and running the original program M lo-
cally on the machine of the malware author. The only use-
ful schemes for public key obfuscation are then those that
reduce the communication to something closer to the size
of the actual output M(x1, . . . xn). What such a scheme
offers, then, is the combination of two properties: low com-
munication and program hiding. Either one may be trivially
achieved alone.

These properties have another interesting relationship.
When a malware author wishes to hide the function being
computed on the compromised host, this actually intensi-
fies the need for the reduced communication in the follow-
ing way. Whenever either a public key obfuscation scheme
or the trivial method of returning all the input data is being
used to hide the function being computed, all an analyst on
the remote host will be able to see is the set of inputs that
are read. The malware author will want this set to be as
large and generic as possible to minimize the information
revealed about their activities. In the case of PIR in partic-
ular, the set of inputs read reveals everything the malware
could possibly be retrieving, so it must be large if meaning-
ful secrecy is to be achieved. This relationship between the
need for secrecy of the function computed (or documents
returned in the special case of PIR) and the need to read a
great deal of data on the remote host narrows the circum-
stances under which the trivial approach of returning all in-
put is possible. In particular, the malware author may wish
to limit exfiltration bandwidth used by the malware to re-
duce the chances of detection.

The two properties offered by these techniques are then

Low bandwidth
The malware may scan a large amount of data and thus
effectively hide its intentions, but only use bandwidth
to send back what is deemed relevant, thus decreasing
the likelihood of detection.

Hiding
In case of discovery, the malware will not reveal what
specific information was sought. Even with full access
to and control over the malware binary (or even its
source code), its execution environment, and all data
included with it, security professionals and researchers
will be provably unable to determine which specific
pieces of data the malware was retrieving.

This raises a natural question: “Under what circumstances
are these properties important to a malware author?”. To an-
swer this question, in the next section we explore the goals
of authors targeted malware and the constraints under which



they operate.

3 PIR-Based Malware

Having considered the general definitions of public key
obfuscation and cryptographic tools for implementing it, we
now consider in depth a specific example of such techniques
that could be used in malware today. Specifically, we inves-
tigate the possibility of malware employing PIR techniques.

3.1 Targeted Espionage

Compromised hosts are of course desired for a variety of
purposes, including DDOS attacks and as stepping stones
for further malicious activities. PIR techniques, however,
will be naturally most useful in the case of malware de-
signed to retrieve information. Recent years have seen
increasing cases of malware found within organizations
specifically targeted for military or industrial espionage.

In one such case, dubbed “Trojangate”, ten’s of thou-
sands of commercially sensitive documents were captured
by malware on hosts within dozens of prominent Israeli
companies and exfiltrated to about 100 receiving servers,
causing widespread media attention [29, 27]. The trojan,
known as Rona or Hotword.B, was specifically written for
espionage purposes and had not been previously encoun-
tered in the wild. Furthermore, the incident was not an op-
portunistic attempt on the part of an isolated hacker to ob-
tain valuable information; instead the malware was sold to
and used by several private investigation firms that had been
hired by three of Israel’s top telecom companies. The tro-
jan was introduced into the targeted organizations through
carefully executed social engineering efforts employing in-
fected documents attached to emails and delivered on CD’s.
There it used lists of keywords to trigger keystroke logging
and screen captures, in addition to searching for sensitive
documents [20]. Due to the low profile maintained by the
infected machines, the trojan was not discovered for over a
year and a half, causing what the head of the Israeli inves-
tigation called “one of the gravest scandals in ... industrial
and market espionage in Israel”. The incident ultimately
resulted in stock losses, numerous arrests, and a possible
attempted homicide.

A number of other incidents highlight the threat of care-
fully targeted malware. In 2004, several New York banks
were affected by a piece of malware that was designed
to infect only specific systems within their organizations;
a project by the Ponemon Institute revealed malware that
searched for documents flagged as confidential or “critical”;
and anti-virus firm MessageLabs discovered a trojan specif-
ically designed to obtain data from an application used in
airplane design – suggesting military espionage [29]. These
incidents reveal a setting in which stealthy operation may be

of paramount importance to the malware author; explicitly
searching for sensitive documents may unacceptably reveal
a link between the malware and its origin when it is eventu-
ally analyzed. In cases of military, political, or commercial
espionage, PIR techniques may be the key to effectively ob-
taining sensitive information while exfiltrating minimal data
and thus avoiding detection.

3.2 Attacker Goals and PIR

We now consider in greater detail the possible motiva-
tions of malware authors and challenges they face to de-
termine the conditions under which PIR techniques will be
beneficial. Table 1 lists a number of types of information
they may seek from a compromised host.

Exfiltration strategies. For each example in Table 1, we
give the general type of document or kind of data de-
sired (second column), the criteria for finding the specific
documents or pieces of data of interest (third and fourth
columns), and the risk incurred by performing an explicit
search for the items of interest (fifth column). In the sixth
column we give the bandwidth necessary to exfiltrate all
data of that type, and in the seventh, the bandwidth nec-
essary to exfiltrate only a specific item of interest. Note that
some of these examples are concerned with transient data
(e.g., network traffic), which must be recorded by malware
present on the system as it arises, while others correspond
to static data which is stored on the host. In the case of static
data, the malware may immediately begin scanning for and
exfiltrating data upon arrival and terminate upon comple-
tion, while malware seeking transient data must wait within
the system.

To retrieve the desired information, a malware author has
three options.

Return all
Exfiltrate all data of that type.

Explicit search
Include keyword list or other search criteria, and only
return the relevant items.

Private search
Use PIR techniques to return the relevant items while
hiding the search criteria.

The return all strategy may be employed whenever a type
of data is small enough to be exfiltrated in its entirety with-
out arousing suspicion or the malware author knows that
no system will be monitoring bandwidth. In this case, PIR
techniques are not necessary. Otherwise, the malware au-
thor will need to selectively return only items matching a
list of keywords or other criteria. If these keywords or crite-
ria do not reveal an unacceptable link with the source of the
malware or their intentions, the search may be performed



Information
desired

Data to
return

Data to
search

Search
query

Importance
of query
secrecy

Bandwidth
for all data
of type

Bandwidth
for desired
data

Utility of
PIR

System
passwords

Logged
keystrokes

Keystrokes,
window
titles and
content

Trigger text in-
dicating pass-
word entry

Low < 10 KB
per day

10’s of
bytes per
password

Low: use
explicit search
or return all

Bank and
other online
account
credentials

HTTP POST
request con-
tent

Destination
URL

List of
domains
(financial, etc.)

Low < 60 KB
per day [7]

< 3 KB
per post [7]

Low: use
explicit search
or return all

User web
activity

URL’s in
browser
history and
pages
in cache

URL’s, web
page text

List of
keywords
and URL’s
of interest

Potentially
high

100’s of MB
to multiple
GB1

10’s of KB
per page

High

Business
materials

Productivity
application
documents
(i.e., .doc,
.xls, etc.)

Document
content

Keywords of
interest

Potentially
high

10’s of MB 100’s of KB
per docu-
ment

High

Visual
snapshot
of user
activities

Screenshots Keystrokes,
window
titles and
content

Trigger
text and
keywords of
interest

Potentially
high

100’s of MB
per day2

≈100 KB
per screen-
shot

High

SIP / VoIP
conversations
(to and from
one phone)

Speech
recording

Name of
caller or
callee, text
from voice
recognition

List of
names,
keywords of
interest

Likely high ≈100 MB
per day3

≈3 KB
per minute

High

Email
(to and from
one user)

Email headers
and body

Email
addresses,
email body

List of
addresses,
keywords of
interest

Likely high 100’s of KB
per day

10’s of KB
per docu-
ment

High

Table 1. Example scenarios for the capture and exfiltration of sensitive information by malware. The first column lists a general type
of information a malware author or user may wish to obtain from a compromised machine. Columns 2 - 5 describe the specific pieces
of data to be retrieved and how the malware may search for them. Columns 6 and 7 estimate bandwidth necessary to exfiltrate all data
of that type or only the pieces of interest, and the final column suggests the resulting utility of PIR techniques. Bandwidths given are
rough estimations (to an order of magnitude) of typical usage, and compression is assumed where possible.

1By default, Internet Explorer sets the size of the web cache to 10% of the installed hard drive space, often causing unreasonably large caches. Other
browsers use more modest values.

2One screenshot every 2 to 10 seconds of user activity, with 3 to 7 hours of user activity per day.
3About 30 to 40 minutes per day of G.729 or G.723.1 encoded speech.

normally within the malware (explicit search), and PIR
techniques are again unnecessary. However, when exfiltrat-
ing all data possibly of interest would consume a conspic-
uous amount of bandwidth and revealing the specific infor-
mation sought would be unacceptable, the private search
strategy becomes key to achieving the malware author’s
goals. We will now consider the bandwidth constraints of
malware authors and their motivation for hiding the infor-
mation they seek in order to determine when both these con-
ditions hold.

Available bandwidth. To date, malware authors have pri-
marily retrieved information from compromised machines
by directly forming new outgoing connections rather than

attempting to piggy back data on existing traffic using net-
work covert channels. To help avoid detection, the traffic
may be minimally disguised as legitimate, for example by
using port 80 and formatting the traffic as an HTTP request.

Recently, a web proxy dubbed Web Tap that attempts
to detect automated outbound transmissions disguised as
browsing sessions was developed [7]. By recordings statis-
tics such as the timing and sizes of HTTP requests in le-
gitimate browsing sessions, Web Tap was able to detect a
number of spyware clients and backdoors that tunnel com-
munication in this manner. To avoid detection in the place
of similar monitoring techniques, the malware must time
traffic to blend in with existing web browsing sessions and
throttle its bandwidth to be below alert thresholds. Both



of these techniques have been observed in the wild [8, 20].
During the development of Web Tap, detailed statistics on
normal web browsing traffic patterns were recorded in or-
der to set the alert thresholds on outbound traffic. The re-
sults suggest thresholds of about 60 KB per user per day,
of which at most 20 KB may be directed to a single re-
ceiving server. Lower thresholds result in an unmanageable
amount of false positives. These thresholds provide the mal-
ware author with a very clear bound on the possible rate of
covert exfiltration from a user workstation. Referring to Ta-
ble 1, we see that in all but one or two of the listed scenarios
malware attempting to exfiltrate all data of a particular type
would result in a high risk of detection through bandwidth
monitoring techniques. An exception is keystroke logging
data (first row); an entire day’s worth of logged keystrokes
could likely be exfiltrated undetected. Exfiltrating all out-
going user HTTP traffic may also be possible (second row),
depending on the amount of activity and particular thresh-
old levels. In all other considered cases, a malware author
concerned with detection would need to employ either an
explicit search or a private search for the specific data of
interest if bandwidth monitoring may be present.

Query secrecy. We now evaluate the need for malware
authors and users to conceal the criteria used to conduct a
search. While this is a more subjective task, considering
each of the listed scenarios provides some insight. In each
case, by employing a private search, the malware author
would only reveal that the type of information it seeks is
that of the second column. In contrast, by searching explic-
itly, they would reveal which specific pieces of information
they wish to obtain.

The first two rows correspond to general attempts to ob-
tain account credentials. In these cases, the malware author
is likely to have little need to conceal the specific accounts
they hope to access. The remaining scenarios correspond to
more insidious attempts to gather information that suggest
a program of focused espionage, as exemplified by the real
life anecdotes in Section 3.1. In these cases, a query for
specific information is likely to be highly sensitive to the
investigation. This is especially true of the scenarios of the
last two rows, which correspond to monitoring of personal
communications.

Solution. In summary, it is clear than in many situations
– especially those motivated by attempts at targeted espi-
onage – the malware author has little bandwidth available
for exfiltration of sensitive data, yet must not reveal the spe-
cific information they seek. PIR is key to achieving the
attacker’s goals in these situations. To gauge the imme-
diacy of the threat of malware employing PIR techniques,
we need to evaluate the communication and computational
overhead incurred and the logistical hurdles to using them

in practice. In the following sections, we give a description
of our full implementation of a recent scheme, our adapta-
tion of it to data exfiltration, and the results of experiments
demonstrating that it can be used in malware today.

4 Implementation and Experiments

4.1 Implementation

We have built a complete toolkit (“privss”) imple-
menting a recent private stream searching scheme [5] and
made it available on the web under the GPL [4]. Of course,
our intention in making it publicly available is not to reduce
the work of malware authors; rather the toolkit is provided
in the hope that it will be useful for privacy preserving ap-
plications4 and to other security researchers. Those inter-
ested in additional information on the toolkit may find more
technical details in Appendix B.

Adaptation to email exfiltration. To evaluate the lo-
gistical hurdles a malware author may face in using pri-
vate streaming searching within malware, we adapted the
privss package to process and exfiltrate email, as sug-
gested in the last row of Table 1. Although any kind of data
may be exfiltrated, email is a typical example of a sensi-
tive document type, roughly similar in size and quantity to
productivity application documents, web pages, etc.

For each message, a set of associated keywords is ex-
tracted from the message headers and body. To allow case-
insensitive matching, all extracted words are converted to
lowercase. The keyword matching method of [5] results in
some (low) probability of each word appearing in a docu-
ment causing a “false positive” match, in which the docu-
ment is returned (consuming space in the fixed length re-
sults buffer) despite not matching the actual query. This
probability depends on the size allocated for the encrypted
query, and may be reduced with larger queries. Since gram-
matical words and other generic English words are unlikely
to form useful queries, a list of the 1,500 most common En-
glish words (derived from the British National Corpus [1])
is used to filter the extracted keywords. This has the im-
portant effect of reducing these false positives. This also
reduces query secrecy in the sense that it reveals that the
query does not include any of those words, but a brief re-
view of the words present in the filtering list makes it clear
that none are likely to be useful search terms in any case.
Finally, gzip compression is applied to reduce the length of
the message before processing it with the private search al-
gorithm.

4Notwithstanding processing time versus communication time argu-
ments [28], private stream searching may be useful in applications in which
bandwidth is limited by cost or other constraints.



A key task in any use of a system for private stream
searching is the selection of a bound on the number of doc-
uments to be retrieved. The fixed length of the buffer that is
incrementally updated by the private search algorithm dur-
ing document processing allows the possibility of an “over-
flow” of matches, resulting in the inability to later recon-
struct the matching documents. The need for a fixed length
buffer is actually inherent in the problem of private stream
searching. Allowing the algorithm to grow the buffer as
necessary would require it to distinguish matching docu-
ments from non-matching documents, in violation of the
security definition for private stream searching. Thus any
secure scheme must ensure that this is not possible, only
allowing fixed length buffers.

The malware author then needs some a priori informa-
tion about the number of documents that may match their
query and their total size. In some search and exfiltration
applications (e.g., as in the third row of Table 1), this is eas-
ily obtained, but in most cases they will need to estimate
or limit the total number of documents searched and esti-
mate the portion likely to contain their keywords. For the
purposes of email search and exfiltration, this may be aided
by a period of initial monitoring. The malware may be de-
signed to spend an initial period recording statistics on the
number of emails sent to and received by the user and their
average length, and compute a size for its buffers accord-
ingly. This is the strategy employed by our adaptation of
the privss package.

4.2 Experiments

Having put together a system for searching and exfiltrat-
ing email, we ran a series of tests to evaluate the commu-
nication overhead incurred and other factors affecting the
practicality of these techniques for the malware author. The
experiments were conducted on a dataset of about 200,000
emails sent within the Enron corporation from 1999 through
2002 that was publicly released in 2003 as a part of the in-
vestigation by the US Federal Energy Regulatory Commis-
sion [18]. By using a dataset already publicly released, we
gain the advantage of a large volume of real documents (in-
cluding many on sensitive topics) without raising privacy
concerns.

Two basic scenarios were considered in this context. In
the first case, we imagine that the workstation of a single
user has been compromised with malware that will monitor
all messages received by or sent by that individual. This
scenario allows us to consider the use of private stream
searching malware in a setting with relatively few docu-
ments and more strict requirements on acceptable exfiltra-
tion bandwidth. At the other extreme, we also consider the
case of a compromised mail server that will spy on all mail
passing through its MTA. In this case, a large volume of

documents will be searched, and more bandwidth may be
used to surreptitiously exfiltrate results.

Compromised workstation. To analyze the case of the
compromise of a single user’s workstation, we collected all
email from the Enron corpus to and from a single user over
a period of ten days. The private search and exfiltration sys-
tem scanned previous email to determine the average num-
ber of messages seen per day and their average size, allow-
ing it to pick sizes for the buffers kept during the search.
While general statistics such as these may be used by the
malware to configure search parameters, the keywords used
in the query of course may not be considered without com-
promising secrecy. Buffer space was allocated to allow up
to ten total messages of average size to be retrieved over
the ten day period, or an average of one per day. Given
these parameters, we ran a search using the keyword “sen-
sitive”. This was repeated for various sizes of the encrypted
query hash table. Using a larger encrypted query has the
effect of reducing the false positive rate and results in the
malware accordingly selecting a somewhat smaller results
buffer. This procedure was further repeated for three differ-
ent users, namely, Richard Shapiro and James Steffes (VP’s
in Enron) and Jeff Dasovich (Director of Enron). These
were the three users most well represented in the corpus
and thus provided a volume of mail most similar to typical
usage.

Averaging the three trials for each query size produced
the results displayed in Figure 2(a). The black bar displays
the daily bandwidth required to directly transmit the (com-
pressed) messages which match the query, as when search-
ing explicitly. The gray bar gives the daily bandwidth used
by the private search, and the white bar gives the daily
bandwidth that would be necessary to return all mail ob-
served. The figure also displays per user exfiltration de-
tection thresholds typical of software designed to detected
such activity. Specifically, the upper (60 KB) and lower
(20 KB) lines correspond to the detection thresholds deter-
mined by Web Tap [7] for the total daily bandwidth and the
total bandwidth leaving for any one site. Judging from the
figure, in this scenario, retrieving all mail observed on the
workstation in the presence of bandwidth monitoring is not
possible without detection. Using an encrypted query of 8
MB or more allows one to exfiltrate the results of a private
search to a single external site, while using an encrypted
query of of 2 - 4 MB may require the data to be split among
sites. Nevertheless, in all cases the private search is feasible
relative to the total bandwidth threshold. It is also apparent
that the private search uses two to three times the bandwidth
necessary to retrieve the files with an explicit search. This
overhead is incurred in two ways: the a priori fixed size of
the results buffer,5 and cryptographic overhead.

5Up to 30 matching messages were allowed between the three users
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Figure 2. Results of email exfiltration experiments.

Each email required about 200 - 300 milliseconds6 to be
processed. Each user sent and received an average of 51
messages per day, thus requiring only about 10 to 15 sec-
onds of processor time per day overall. This result strongly
suggests that computational overhead is not likely to give
away the presence of malware in this scenario.

A somewhat more important consideration for the mal-
ware author is pushing a 2 - 16 MB encrypted query to
the compromised host while avoiding detection. This is
not likely to pose much difficulty, however. Surreptitiously
infiltrating significant amounts of data to a compromised
host is far easier than exfiltrating data, due to the lopsided
bandwidth usage of users under normal circumstances. The
piece of malware which initially infects the system may re-
trieve an encrypted query with a series of HTTP requests
back to a machine controlled by the author. Each retrieved
piece may be disguised as a media file such as an image or
video. Given the current popularity of online video websites
such as YouTube, one such request may even suffice. Al-
though encrypted queries larger than 16 MB could be used,
there is little to gain from doing so as a 16 MB query vir-
tually eliminates false positives for searches of this scale.
Conversely, the number of false positives resulting from
a query much smaller than 2 MB may be problematically
large, but infiltrating at least 2 MB should pose no difficulty.

Compromised mail server. Now we turn to the scenario
of a compromised mail server monitoring all mail passing
through it’s MTA. The private search and exfiltration system
was invoked with the search keyword “sensitive” as before,
this time processing one day’s worth of mail in the corpus

tested, but a total of 19 messages matched.
6The processor in the workstation used was a 64-bit, 3.2 GHz Pentium

4. The workstation had 2GB of RAM, although memory capacity did not
play a significant role in this experiment.

to and from all users (approximately 2,500 messages). The
buffer sizes were initialized to the same bounds as in the
previous case, scaled up in proportion to the volume of mail
processed. As before, the experiments were repeated for
several query sizes. The results are shown in Figure 2(b). In
this case, we do not have clear bounds on possible detection
thresholds, but some observations can be made. Naively
exfiltrating all mail observed will (at least) double outbound
bandwidth, almost certainly causing an alert if the server’s
bandwidth is monitored. A malware author attempting to
retrieve specific messages passing through the server while
concealing which they are seeking would do well to employ
a private search. The cost incurred in this scenario is the
usage of approximately twice the bandwidth of an explicit
search.

While infiltrating the encrypted query will likely not
pose any more of a problem than in the previous scenario,
the computational costs may be troublesome to the mal-
ware author in this case. While the processing time (on the
same machine as in the last example) remains at about 200 -
300 milliseconds per message, the CPU usage patterns may
be somewhat more predictable on a server machine than a
workstation. Since the normal time required for the MTA to
process a message will be far less than 200 milliseconds, the
malware author will have to take some care to not dramati-
cally alter the load on the machine in a way that may alert
a host-based intrusion detection system or an observant ad-
ministrator. Of course, mail may be queued for processing
by the private searching code and processed whenever it is
convenient. One possible strategy for obscuring the source
of load would be to inject the relevant code into spam filter-
ing software, which in many cases requires over a second to
process each message. Instances of malware injecting code
into existing libraries and running processes to disguise the



source of load and for other reasons have been observed in
the wild. In the case of this experiment, the malware would
need to hide about 8 - 13 minutes of additional CPU usage
per day.

Summary. In short, private stream searching appears to
be an entirely effective method for malware to surrepti-
tiously search and exfiltrate email. Malware designed to
save and return messages on a specific sensitive topic will
be able to do so without revealing the topic of interest upon
analysis; all that will be determined is that it scans email in
general. Furthermore, as our implementation demonstrates,
there is nothing to prevent these techniques from being used
immediately. This example of PIR-based malware illus-
trates the more general possibility of malware employing
public key obfuscation techniques to hide its behavior, and
thus the intentions of its author.

5 Discussion

Evaluating the threats highlighted by this paper at a high
level, the primary concern is that, in the short term, PIR
techniques will encourage more bold use of malware in ob-
taining sensitive information. While these methods do not
allow malware authors to retrieve any data they otherwise
could not, they reduce the risk in doing so. The scandal
resulting from the “Trojangate” incident was devastating to
the Israeli telecom companies and private investigators re-
sponsible, and the possibility of this kind of fallout serves as
a useful deterrent to similar illicit activities. Private search-
ing and other private information retrieval techniques may
unfortunately reduce this deterrent. Looking farther into the
future, if and when more advanced schemes are developed
within the framework of public key obfuscation, they will
also enter the malware author’s toolbox.

While little can be done to directly address the possibil-
ity of the use of such techniques in malware, it is helpful
to at least be aware that it is not always possible to deter-
mine precisely what malware may be computing or exfil-
trating. Instead, when analyzing malware one must assume
that in principle it could be retrieving any data that could
be derived from anything it has read. As for more specific
methods for detecting and preventing this threat, there are
several directions worth further consideration. First, the sig-
nificant computation required by methods for computing on
encrypted data may increase the vulnerability of this type of
malware to host based anomaly detection systems. This is
especially true in the case of servers, in which the CPU load
may be more predictable.

6 Conclusions

In summary, an evaluation of the goals of malware au-
thors and the risks they face in retrieval of sensitive infor-
mation reveals that PIR may prove to be an attractive tech-
nology for the next generation of malware. By minimizing
the bandwidth necessary to exfiltrate the desired data while
hiding precisely what is sought, PIR techniques allow the
malware author or user to simultaneously reduce the risk
of detection and the risk of association with the malware
in case of its analysis. This new threat raises the challenge
of finding better methods for detecting and preventing these
techniques. Looking farther ahead, PIR techniques may be
the first of a series of new methods for analysis-resistance
in malware.
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A Example PIR Scheme

Here we give a very simple example of a private informa-
tion retrieval scheme (from [23]) constructed from a homo-
morphic cryptosystem, placed in the framework of general
public key program obfuscation. We use the Paillier cryp-
tosystem [25], which supports an additive homomorphism
via multiplication of ciphertexts. That is, ∀x1, x2 ∈ P ,
D(E(x1) · E(x2)) = x1 + x2.

Suppose the PIR server stores n database entries, each
considered to a single bit for simplicity. Assume the values
are arranged in a square matrix X = (xij)1≤i,j≤

√
n. Now,

in the context of public key obfuscation, we are considering
the class of programs C that read all entries in the database
and return the entry at some predetermined index. Then
Compile and Decrypt may operate as follows:

Compile(M) → Menc,K
Let i′, j′ be the index of the bit that M returns. Gen-
erate a Paillier key pair with private key Kpriv. Next,
compute the vector Q = (qi)1≤i≤

√
n, where

qi =

{
E(1) if i = i′

E(0) otherwise.

Note that Paillier is a probabilistic cryptosystem, so in
general each qi is distinct. Now let K = (Kpriv, j

′)
and define Menc as follows:

Menc(X) → R
For each j ∈ {1, . . .

√
n}, compute rj =∏√

n
i=1 q

xij

i . Output R = (r1, r2, . . . r√n).

Decrypt(Menc(X) = R, K = (Kpriv, j
′)) → {0, 1}

Using Kpriv, decrypt rj′ and output the result.

To see that Decrypt will produce the correct output, note
that by the homomorphism

D(rj′) =

√
n∑

i=1

xij′D(qi) = xi′j′ .

The hiding property is achieved directly from the seman-
tic security of Paillier encryption, which has in turn been



hosta$ privss-qcon illuminati mkultra
hosta$ ls
enc_query prv_key
hostb$ ls
enc_query kennedy.jpg report.pdf interview.mp3
hostb$ privss-search enc_query enc_res kennedy.jpg rfk "robert kennedy"
hostb$ privss-search enc_query enc_res report.pdf mkultra "sodium pentothal"
hostb$ privss-search enc_query enc_res interview.mp3 sirhan illuminati
hostb$ ls
enc_query enc_res kennedy.jpg report.pdf interview.mp3
hosta$ ls
enc_query enc_res prv_key
hosta$ privss-recon enc_query enc_res prv_key
hosta$ ls
enc_query enc_res prv_key report.pdf interview.mp3

Figure 3. Example usage session with the privss toolkit.

proven based on the decisional composite residuosity as-
sumption (DCRA).

With O(
√

n) communication, this simple PIR scheme
is inefficient relative to modern schemes. However, it
serves to illustrate the usage of homomorphic encryption
and shares the general flavor of more advanced schemes.

B The privss Toolkit

The privss toolkit is a general purpose package for
practical usage of a recent private stream searching scheme.
It utilizes a library implementing the Paillier cryptosys-
tem, which we have also made available [3]. A number
of extensions to the basic scheme described in [5] are also
implemented, including the Bloom filter-based index stor-
age, the technique for reducing the size of the Bloom filter,
and the method for transparently handling files of arbitrary
length. The interface of the toolkit is designed for straight-
forward invocation by larger systems in addition to manual
usage. It provides three command line tools. The function-
ality of these tools mirrors the three algorithms described
in [5]: QueryConstruction, StreamSearch, and
FileReconstruction.

privss-qcon
Generates an encrypted query and private key for the
specified keywords using the
QueryConstruction algorithm.

privss-search
Processes a file using an encrypted query, creat-
ing or updating a buffer of results according to the
StreamSearch algorithm.

privss-recon
Using the private key and a buffer from
privss-search, recovers the files which matched
the query using the FileReconstruction

algorithm.

In the framework of public key obfuscation as described in
Section 2, privss-qcon implements the Compile algo-
rithm, privss-search and the encrypted query would
be bundled together to form Menc, and privss-recon
implements the Decrypt algorithm.

Figure 3 depicts a simple example usage session of the
privss toolkit. First, an encrypted query for the key-
words “illuminati” and “mkultra” is generated on Host A.
The file enc query is sent to Host B, where it is used
to process three files, each of which has a list of associ-
ated keywords. The file enc res is produced. Back on
Host A, it is used with the private key prv key to recon-
struct the files with keywords matching the query. Note that
the privss-search tool does not attempt to read key-
words directly from the files. Instead it allows the user (or
higher-level invoking application) to specify keywords ex-
plicitly; in this way a variety of document types may be
handled in application specific ways. In this example, key-
words for the latter two files may have been obtained using
the pdftotext and id3info programs.

C Distributed Searches and Worms

Here we consider an additional, somewhat more spec-
ulative usage of PIR techniques in malware: distributed
searches. If a malware author is seeking a particularly
rare piece of data across a large number of hosts, receiv-
ing results buffers from each individually will incur a large
amount of wasted bandwidth on the receiving host. Since
the receiving host will likely also be a compromised ma-
chine, this will increase the chances of detection and failure
to obtain the desired information.

However, a particular technical property of both private
stream searching schemes to date [22, 5] allows an alterna-
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Figure 4. A distributed private search. Hosts Y and Z search two sets of documents in parallel, then host X combines the results.

tive approach. After a buffer of encrypted results has been
initialized for subsequent use with a particular query, the
buffer may be split by simply producing any number of
copies of it. These may be sent to multiple hosts, where
the StreamSearch algorithm (see Appendix B) may be
employed on each to process documents in parallel. Eventu-
ally, the resulting buffers (with contents now diverged from
one another) may be merged back together into a single
buffer of the same size. The resulting buffer may be used
with the FileReconstruction algorithm to obtain the
matching documents from all hosts, just as if the documents
on each host had be processed one after another with a sin-
gle buffer. In short, due to the homomorphism which origi-
nally allows the scheme to function, merging buffers is pos-
sible by simply multiplying the contents of the buffers to-
gether element by element (with minor additional consid-
erations [5]). This process for distributed private searches
is depicted in Figure 4. In step (a), a host X initializes a
buffer for the StreamSearch algorithm and sends copies
to hosts Y and Z. Hosts Y and Z each search their own set
of documents in step (b), before returning their copies of
the buffer to X in step (c). As step (d) host X applies the
homomorphism to obtain a single buffer containing the re-
sults from both Y and Z. At this point, host X may continue
the search by processing its own documents with the buffer.
Note that this process may be applied recursively; host Y for
example can in turn pass the buffer on to further hosts and
merge the results between steps (a) and (b). This pattern of
splitting and merging behavior suggests the possibility of
a private search being conducted by a worm in a tree like
fashion across a very large number of hosts. While this is
a highly speculative scenario, we now give rough calcula-
tions evaluating the feasibility of an extreme example that
may be suited to such a distributed search.

Suppose an attacker wishes to find the PGP / GPG pri-
vate key of a specific individual and furthermore does not
wish to reveal their interest in that individual. Although it’s
not entirely clear when this secrecy would be essential (per-
haps an investigation of a particularly elusive criminal), we
continue the example due to technical interest. The attacker
assumes the key is stored on some workstation used by the

user,7 but does not know the location of the machine or does
not wish to specifically connect to it, thereby revealing their
intentions. Therefore they decide instead to release a worm
which will attempt to recover the key using the distributed
searching technique shown in Figure 4.

In this scenario, the search could be accomplished while
consuming relatively little bandwidth to and from any sin-
gle host. Suppose one million hosts will be infected by the
worm in all, and assume each host has at most one stored
private key to be searched. Using the scheme of [5] with a
256 KB query, under 1000 false positives should result, and
a results buffer of about 256 KB should suffice to ensure
overflow does not occur. We omit the details of these cal-
culations here for brevity; for similar calculations see [5].
Suppose the worm, carrying the encrypted query within it,
infects new hosts in a tree pattern with a branching factor of
k using a precomputed hitlist. In this phase, each host will
receive the 256 KB encrypted query, and send it out to each
subsequent host it infects. Eventually, each leaf host runs
the StreamSearch algorithm on any stored keys discov-
ered, and return its 256 KB results buffer to the host that
infected it. Each non-leaf receives k buffers, merges them,
and recursively returns the result. Thus, overall, each host
uses (k + 1) · 256 KB of outbound bandwidth. With k = 3,
for example, each host would generate a total of 1 MB of
outbound bandwidth, and the infection tree would have a
height of 13. While it is unclear how likely such an attack
is in practice, this type of widespread, distributed private
search forms an intriguing possibility that perhaps deserves
further attention.

7Of course, it would most likely be encrypted with a passphrase, but
after retrieval it could be subjected to an offline dictionary attack.


