
Practical Techniques for Searches on Encrypted Data
�

Dawn Xiaodong Song David Wagner Adrian Perrig
�
dawnsong, daw, perrig � @cs.berkeley.edu

University of California, Berkeley

Abstract

It is desirable to store data on data storage servers such
as mail servers and file servers in encrypted form to reduce
security and privacy risks. But this usually implies that one
has to sacrifice functionality for security. For example, if a
client wishes to retrieve only documents containing certain
words, it was not previously known how to let the data stor-
age server perform the search and answer the query without
loss of data confidentiality.

In this paper, we describe our cryptographic schemes
for the problem of searching on encrypted data and pro-
vide proofs of security for the resulting crypto systems. Our
techniques have a number of crucial advantages. They are
provably secure: they provide provable secrecy for encryp-
tion, in the sense that the untrusted server cannot learn
anything about the plaintext when only given the cipher-
text; they provide query isolation for searches, meaning
that the untrusted server cannot learn anything more about
the plaintext than the search result; they provide controlled
searching, so that the untrusted server cannot search for an
arbitrary word without the user’s authorization; they also
support hidden queries, so that the user may ask the un-
trusted server to search for a secret word without revealing
the word to the server. The algorithms we present are sim-
ple, fast (for a document of length � , the encryption and
search algorithms only need �����	� stream cipher and block
cipher operations), and introduce almost no space and com-
munication overhead, and hence are practical to use today.

We gratefully acknowledge support for this research from several US

government agencies. This research was suported in part by the Defense
Advanced Research Projects Agency under DARPA contract N6601-99-
28913 (under supervision of the Space and Naval Warfare Systems Center
San Diego), by the National Science foundation under grant FD99-79852,
and by the United States Postal Service under grant USPS 1025 90-98-C-
3513. Views and conclusions contained in this document are those of the
authors and do not necessarily represent the official opinion or policies,
either expressed or implied of the US government or any of its agencies,
DARPA, NSF, USPS.

1 Introduction

Today’s mail servers such as IMAP servers [11], file
servers and other data storage servers typically must be fully
trusted—they have access to the data, and hence must be
trusted not to reveal it without authorization—which intro-
duces undesirable security and privacy risks in applications.
Previous work shows how to build encrypted file systems
and secure mail servers, but typically one must sacrifice
functionality to ensure security. The fundamental problem
is that moving the computation to the data storage seems
very difficult when the data is encrypted, and many com-
putation problems over encrypted data previously had no
practical solutions.

In this paper, we show how to support searching func-
tionality without any loss of data confidentiality. An exam-
ple is where a mobile user with limited bandwidth wants
to retrieve all email containing the word “Urgent” from an
untrusted mail-storage server in the infrastructure. This is
trivial to do when the server knows the content of the data,
but how can we support search queries if we do not wish to
reveal all our email to the server?

Our answer is to present cryptographic schemes that en-
able searching on encrypted data without leaking any infor-
mation to the untrusted server.

� Our techniques are provably secure. The techniques
provide provable secrecy for encryption, in the sense
that the untrusted server cannot learn anything about
the plaintext given only the ciphertext. The tech-
niques provide controlled searching, so that the un-
trusted server cannot search for a word without the
user’s authorization. The techniques support hidden
queries, so that the user may ask the untrusted server
to search for a secret word without revealing the word
to the server. The techniques also support query isola-
tion, meaning that the untrusted server learns nothing
more than the search result about the plaintext.

� Our schemes are efficient and practical. The algo-
rithms we present are simple and fast. More specifi-

cally, for a document of length � , the encryption and
search algorithms only need ��� �	� number of stream
cipher and block cipher operations. Our schemes in-
troduce essentially no space and communication over-
head. They are also flexible and can be easily extended
to support more advanced searches.

Our schemes all take the form of probabilistic searching:
a search for the word

�
returns all the positions where

�
occurs in the plaintext, as well as possibly some other er-
roneous positions. We may control the number of errors
by adjusting a parameter � in the encryption algorithm;
each wrong position will be returned with probability about�����	�

, so for a
 -word document, we expect to see about

 ����� false matches. The user will be able to eliminate all
the false matches (by decrypting), so in remote searching
applications, false matches should not be a problem so long
as they are not so common that they overwhelm the com-
munication channel between the user and the server.

This paper is structured as follows. We first introduce
the problem of searching on encrypted data in Section 2 and
briefly review some important background in Section 3. We
then describe our solution for the case of searching with
sequential scan in Section 4. We discuss further issues such
as advanced search and search with index in Section 5. We
discuss related work in Section 6 and finally we conclude in
Section 7. Appendix A presents the proofs for all of proofs
of security for these schemes.

2 Searching on Encrypted Data

We first define the problem of searching on encrypted
data.

Assume Alice has a set of documents and stores them
on an untrusted server Bob. For example, Alice could be a
mobile user who stores her email messages on an untrusted
mail server. Because Bob is untrusted, Alice wishes to en-
crypt her documents and only store the ciphertext on Bob.
Each document can be divided up into ‘words’. Each ‘word’
may be any token; it may be a 64-bit block, an English
word, a sentence, or some other atomic quantity, according
to the application domain of interest. For simplicity, we typ-
ically assume these ‘words’ have the same length (otherwise
we can either pad the shorter ‘words’ or split longer ‘words’
to make all the ‘words’ to have equal length, or use some
simple extensions for variable length ‘words’; see also Sec-
tion 5.3). Because Alice may have only a low-bandwidth
network connection to the server Bob, she wishes to only
retrieve the documents which contain the word

�
. In or-

der to achieve this goal, we need to design a scheme so that
after performing certain computations over the ciphertext,
Bob can determine with some probability whether each doc-
ument contains the word

�
without learning anything else.

There seem to be two types of approaches. One possibil-
ity is to build up an index that, for each word

�
of interest,

lists the documents that contain
�

. An alternative is to per-
form a sequential scan without an index. The advantage of
using an index is that it may be faster than the sequential
scan when the documents are large. The disadvantage of
using an index is that storing and updating the index can be
of substantial overhead. So the approach of using an index
is more suitable for mostly-read-only data.

We first describe our scheme for searching on encrypted
data without an index. Since the index-based schemes seem
to require less sophisticated constructions, we will defer
discussion of searching with an index until the end of the
paper (see Section 5.4).

3 Background and Definitions

Our scheme requires several fundamental primitives
from classical symmetric-key cryptography. Because we
will prove our scheme secure, we use only primitives with
a well-defined notion of security. We will list here the re-
quired primitives, as well as reviewing the standard defini-
tions of security for them. The definitions may be skipped
on first reading for those uninterested in our theoretical
proofs of security.

We adopt the standard definitions of security from the
provable security literature [2], and we measure the strength
of the cryptographic primitives in terms of the resources
needed to break them. We will say that an attack � -breaks
a cryptographic primitive if the attack algorithm succeeds
in breaking the primitive with resources specified by � , and
we say that a crypto primitive is � -secure if there is no al-
gorithm that can � -break it. Let ��
������ ������� ����� �	�
be an arbitrary algorithm and let � and � be random vari-
ables distributed on ����� ����� . The distinguishing probability
of � —sometimes called the advantage of � —for � and �
is

Adv ��� �"!$#�% � �&� �$� �('*) !+#,% � �-� �$� �.' �0/
With this background, our list of required primitives is

as follows:

1. A pseudorandom generator 1 , i.e., a stream cipher.
We say that 12
�354 � 6 is a �&78�:9 � -secure pseu-
dorandom generator if every algorithm � with run-
ning time at most 7 has advantage Adv �<;=9 . The
advantage of an adversary � is defined as Adv �>�
�"!+#,% � �?1 �A@CBED � �F� �('G) !$#�% � �A@$H �I� �.' � , where
@CBEDC�J@+H are random variables distributed uniformly
on 3 4 � 6 .

2. A pseudorandom function K . We say that KL
M3ON�PQ �SR
is a �-78�:TU�V9 � -secure pseudorandom function

if every oracle algorithm � making at most T oracle

queries and with running time at most 7 has advantage
Adv ��; 9 . The advantage is defined as Adv �<�
�"!+#,% � N � � �.'C) !$#�% � � � �(' � where � represents
a random function selected uniformly from the set of
all maps from

Q
to
R

, and where the probabilities are
taken over the choice of

�
and � .

3. A pseudorandom permutation � , i.e., a block cipher.
We say that �
�3�� P�� � � is a �-78�:TU�V9 � -secure pseu-
dorandom function if every oracle algorithm � making
at most T oracle queries and with running time at most
7 has advantage Adv � ;�9 . The advantage is defined
as Adv � �>� !$#.% � � �
	 ����
� � �.') !$#,% ��� 	 � ��
 � �(' �
where � represents a random permutation selected uni-
formly from the set of all bijections on � , and where
the probabilities are taken over the choice of

�
and � .

Notice that the adversary is given an oracle for encryp-
tion as well as for decryption; this corresponds to the
adaptive chosen-plaintext/ciphertext attack model.

In general, the intuition is that �-78�:TU�V9 � -security represents
resistance to attacks that use at most 7 offline work and at
most T adaptive chosen-text queries.

There is of course no fundamental need for three sepa-
rate primitives, since in practice all three may be built out
of just one off-the-shelf primitive. For instance, given any
block cipher, we may build a pseudorandom generator us-
ing the counter mode [3] or a pseudorandom function using
the CBC-MAC [4].

We rely on the following notation. If �
 3 P Q � R
represents a pseudorandom function or permutation, we
write ��� ��� � for the result of applying � to input � with key��� 3 . We write ���E����� for the concatenation of � and � ,
and � �!� for the bitwise XOR of � and � . For the remain-
der of the paper, we let 1
 3 4 � Q#" be a pseudorandom
generator for some
 , K
 3 N P Q � � be a pseudo-
random function, and �
 3$� P%� � � be a pseudoran-
dom permutation. Typically we will have

Q � ����� �����'& � ,R ������� �	� � , and � � Q P R � ����� �	� � .

4 Our Solution with Sequential Scan

In this section, we introduce our solution for searching
with sequential scan. We first start with a basic scheme
and show that its encryption algorithm provides provable
secrecy. We then show how we can extend the first scheme
to handle controlled searching and hidden searches. We de-
scribe our final scheme which satisfies all the properties we
mentioned earlier including query isolation at the end.

4.1 Scheme I: The Basic Scheme

Alice wants to encrypt a document which contains the
sequence of words

�)(�,/././ � � " . Intuitively, the scheme

works by computing the bitwise exclusive or (XOR) of the
clear-text with a sequence of pseudorandom bits which have
a special structure. This structure will allow to search on the
data without revealing anything else about the clear text.

More specifically, the basic scheme is as follows. Alice
generates a sequence of pseudorandom values

6 (�,/././ � 6 "
using some stream cipher (namely, the pseudorandom gen-
erator 1), where each

6+*
is �) � bits long. To encrypt

a � -bit word
� *

that appears in position , , Alice takes the
pseudorandom bits

6 *
, sets - *
 �.� 6 * �:K �0/ � 6 * ��� , and outputs

the ciphertext 1 *
 � � * �2- * . Note that only Alice can gen-
erate the pseudorandom stream - (�./,/./ �3- " so no one else
can decrypt. Of course, encryption can be done on-line, so
that we encrypt each word as it becomes available.

There is some flexibility in how the keys
� *

may be cho-
sen. One possibility is to use the same key

�
at every po-

sition in the document. Another alternative is to choose a
new key

� *
for each position independent of all other keys.

More generally, at each position, Alice can either (a) choose� *
to be the same as some previous

��4
(5 ;�,), or (b) choose� *

independently of all the previous keys. We shall see later
how this flexibility allows us to support a variety of inter-
esting features.

The basic scheme provides provable secrecy if the pseu-
dorandom function K and the pseudorandom generator 1
are secure. By this, we mean that, at each position where� *

is unknown, the values - * are indistinguishable from
truly random bits for any computationally-bounded adver-
sary. We formalize the theorem as below.

Theorem 4.1. If K is a �&78�
��:9�N � -secure pseudorandom
function and 1 is a �&78�:9 4 � -secure pseudorandom genera-
tor, and if the key material is chosen as described above,
then the algorithm described above for generating the se-
quence ��- (�././,/M��- " � is a �-7)76 �:9 � -secure pseudorandom
generator, where 9 �I
98"9 N#: 9 4 :
 �
) � � � � � � Q � � and the
constant

6
is negligible compared to 7 .

In other words, we expect the basic scheme to be good
for encrypting up to about
 max � ��� �<; �'& �>=�?A@ � words, if
the pseudorandom function and pseudorandom generator
are adequately secure. See Appendix A for a slightly more
precise statement of the theorem and for a full proof.

The basic scheme supports searches over the ciphertext
in the following way: if Alice wants to search the word

�
,

she can tell Bob
�

and the
� *

corresponding to each lo-
cation , where a word

�
may occur. Bob can then search

for
�

in the ciphertext by checking whether 1 * � � * is
of the form �CB �:K �0/ �CB ��� for some B . Such a search can be
performed in linear time. At the positions where Bob does
not know

� *
, Bob learns nothing about the plaintext. Thus,

the scheme allows a limited form of control: if Alice only
wants Bob to be able to search over the first half of the ci-
phertext, Alice should reveal only the

� *
corresponding to

�

� � �

�

�
�

� ���
� ��	

���
��������

���

���

Plaintext

Stream Cipher

���

Ciphertext

Figure 1. The Basic Scheme

those locations and none of the
� *

used in the second half of
the ciphertext.

As described so far, the basic scheme is not terribly sat-
isfying: if Alice wants to help Bob search for a word

�
,

either Alice must reveal all the
� *

(thus potentially reveal-
ing the entire document), or Alice must know in advance
which locations

�
may appear at (which seems to defeat

the purpose of remote searching). However, we shall see
next how to take care of this difficulty.

4.2 Scheme II: Controlled Searching

Let �F
 3 N P ����� �	��� � 3 N be an additional pseudo-
random function, which will be keyed independently of K .

The main idea is to choose our keys as
� *
 � � ��� � � * � .

We require that
���

be chosen uniformly randomly in 3 by
Alice and never be revealed. Then, if Alice wish to allow
Bob to search for the word

�
, she reveals � � � � � � and

�
to

him. This allows Bob to identify all the locations where
�

might occur, but reveals absolutely nothing on the locations
, where

� *��� � . This attains our desired goal of con-
trolled searching. We show the correctness of this approach
in the following theorem.

Theorem 4.2. Suppose K is a �&78�"
��V9�N � -secure pseudoran-
dom function, � is a �-78�"
��V9� � -secure pseudorandom func-
tion, and 1 is a �-78�:9�4 � -secure pseudorandom generator.
If the key material is chosen as described above, then
the algorithm described above for generating the sequence
��- (�,/././M�3- " � will be a �&7) 6 �V9"! � -secure pseudorandom
generator, where 9"! �
 8 9 N : 9 : 9 4 :
 �
) � � � � � � Q � � .

This shows that our scheme for controlled searching is
about as good as the basic scheme, if the underlying prim-
itives are secure. See Appendix A for a proof as well as a
more precise formulation.

Various extensions of this idea are possible. If the doc-
ument to be encrypted consists of a series of chapters, an
alternative approach is to generate the key

� *
for the word

�
in chapter 1 as

� *
 � � �#� �3�C1 � � � � . This allows Al-
ice to control which chapters Bob may search in as well as
controlling which words Bob may search for.

We can take this idea even further by using a hierarchi-
cal key management scheme. Alice sets

� *
 � �"$ ���?���01$� �
and %
 � � �#� ��� � � � * � � . Then she can reveal either
(1) � � � ;'& ((*) = ���?���A1$� � for each chapter of interest or (2)
� � � ��� � � � � � itself if she wishes to succinctly authorize Bob
to search for

�
in all the chapters.

This scheme still does not support hidden search queries:
in order to let Bob search for the location where the word�

appears, Alice has to reveal
�

to Bob. We shall see next
that this problem can be easily fixed.

4.3 Scheme III: Support for Hidden Searches

Suppose Alice would now like to ask Bob to search for
a word

�
but she is not willing to reveal

�
to Bob. We

propose a simple extension to the above scheme to support
this goal.

Alice should merely pre-encrypt each word
�

of the
clear text separately using a deterministic encryption algo-
rithm � �#� � . Note that � is not allowed to use any random-
ness, and the computation of � �#� � ��� � may depend only on
� and must not depend on the position , in the document
where � is found. So we may think of this pre-encryption
step as ECB encryption of the words of the document us-
ing some block cipher. (Of course, if the word is very
long, internally the map � � � � may be implemented by CBC-
encrypting

� *
with a constant IV, or some such, but the

point is that this process must be the same at every position
of the document.) We let � *
 � ����� � � � * � .

After the pre-encryption phase, Alice has a sequence of
� -encrypted words � (�,/././ � � " . Now she post-encrypts
that sequence using the stream cipher construction de-
scribed above to obtain 1 *
 � � * � - * , where � * �
���#� � � � * � and - * �.� 6 * �VK � / �-� * �3�8/

To search for a word
�

, Alice computes �
 � � �#� � � � �
and

�
 � ���#� �&� � , and sends �-� � � � to Bob. Note that this

�

� � �
�

�
� ���
� ��	

�

�

���
��������

� � � � �

���
Stream Cipher

���

Ciphertext

� �

Plaintext

�

Figure 2. The Scheme for Hidden Search

allows Bob to search for
�

without revealing
�

itself. It
is easy to see that this scheme satisfies the hidden search
property as long as the pre-encryption � is secure.

4.4 Scheme IV: The Final Scheme

Careful readers may have noticed that Scheme III ac-
tually suffers from a small inadequacy: if Alice generates
keys

� *
as
� *
 � ��� � �C��� � � � � * � � then Alice can no longer

recover the plaintext from just the ciphertext because she
would need to know � �#� � � � * � (more precisely, the last �
bits of � � � � � � * �) before she can decrypt. This defeats the
purpose of an encryption scheme, because even legitimate
principals with access to the decryption keys will be unable
to decrypt. (Scheme II also has a similar inadequacy, but
as we will show below, the best way to fix it is to introduce
pre-encryption as in Scheme III.)

We now show a simple fix for this problem. In the fixed
scheme, we split the pre-encrypted word � * � � �#� � � � * �
into two parts, � * � ��� * �V� * � , where � * (respectively � *)
denotes the first �) � bits (resp. last � bits) of � * . Instead
of generating

� *
 � � � � �C� � � * � � , Alice should generate
� *

as
� *
 � ���#� ��� * � . To decrypt, Alice can generate

6 *
using

the pseudorandom generator (since Alice knows the seed),
and with

6 *
she can recover � * by XORing

6+*
against the

first �) � bits of 1 * . Finally, knowledge of � * allows Alice
to compute

� *
and thus finish the decryption.

This fix is not secure if the
� *

’s are not encrypted since it
might be very likely in some cases that different words have
the same first �) � bits. Pre-encryption will eliminate
this problem, since with high probability all the � * ’s are

distinct. (Assuming that the pre-encryption � is a pseudo-
random permutation, then due to the birthday paradox [15],
the probability that at least one collision happens after en-
crypting
 words is at most
 �
) � � ����; �<& ���

(= /)
With this fix, the resulting scheme is provably secure,

and in fact we can also show that it provides query isola-
tion, meaning that even when a single key

� *
is revealed, no

extra information is leaked beyond the ability to identify the
positions where the corresponding word

� *
occurs.

Theorem 4.3. Suppose � is a �&78�
��:9 � � -secure pseudoran-
dom permutation, K is a �-78�"
��V9 N � -secure pseudorandom
function, � is a �&78�"
��V9� � -secure pseudorandom function, 1
is a �-78�:9�4 � -secure pseudorandom generator, and we choose
the key material as described above. Then the algorithm de-
scribed above for generating the sequence ��- (�,/././M�3- " � will
be a a �&7)!6 �:9 ! � -secure pseudorandom generator, where
9 ! �
>8,9�N : 9� : 9�4 :
 �
) � � � � � � Q � � .

Moreover, if we disclose one
� *

and consider the reduced
sequence - � obtained by discarding all the - 4 values at po-
sitions where

� 4 � � * , then we obtain a �&7) 6 �:9 �! � -secure
pseudorandom generator, where 9 �! �I9"! : 9
� :
 � � Q � .

Strictly speaking, the proof of the theorem does not ac-
tually require � to be a pseudorandom permutation: if �
denotes the (keyed) map sending

�
to the first �) � bits

of � �#� � � � � , then we can make do with the much weaker
assumption that collisions in � should be rare. As a special
case, if the first � bits of � (�
	 �) �) can be shown to be
a pseudorandom function, then � will necessarily have the
required property, and we will be able to prove a result anal-
ogous to Theorem 3. This suggests that for pre-encryption

�

� � �
�

�
� ���
� ��	

�

�
� �

���
�����������
Stream Cipher

���

Ciphertext

� � � �

Plaintext

� �
�

� � � � �

Figure 3. The Final Scheme

of long blocks it may be convenient to take ���#� � � � � to be
the bit-reversal of the CBC encryption of

�
under key

� � �
(using a constant IV).

After encrypting word by word, Alice can also re-order
the ciphertext according to some pseudorandom permuta-
tion (known only to Alice). In this case, when Bob performs
the search of a word, he will not be able to tell the position
where the word occurs in the real plaintext.

5 Discussion

5.1 Other Practical Considerations

We can see that updates in this scheme are easy. For ex-
ample, if Alice wants to add a new document into Bob’s
data storage, she can simply encrypt it in the appropriate
way and instruct Bob to append it to the already-stored ci-
phertext. Moreover, since the keys can be generated hierar-
chically from a master key, the key storage and management
is also very convenient: Alice only needs to remember one
password, the master key.

The underlying technique of embedding information in
pseudorandom bit streams may also be of independent in-
terest: we speculate that this simple trick might prove useful
for other applications, too.

5.2 Supporting More Advanced Search Queries

The schemes we presented earlier only address the prob-
lem of searching for a single word. We show several ex-

amples to illustrate that it is relatively easy to implement
more advanced searching functionality using our scheme as
a fundamental building block.

It is clear that we can easily support advanced search
queries which use boolean operators (e.g.,

�
and
� �

),
proximity queries (e.g.,

�
near

� �
), and phrase searches

(e.g.,
�

immediately precedes
� �

).
We can also support searches if the query is given as a

regular expression using, e.g., wildcards in a limited form.
For example, if Alice wishes to search for the word � ��% � – �

'
,

then she can actually generate 26 search queries of the form
��� ��� ��� � ���././,/*��� ��� � . However, the number of queries re-
quired (and the information leaked to the server) clearly
grows dramatically as the search word becomes more gen-
eral.

For many applications the purpose of the search is to find
documents which contain a specific word, where the posi-
tion or the number of occurrences are not relevant. For ex-
ample, searching email is such an application, where the
query takes on the form “find all email from Joe”. For this
application, the previous search schemes leaked informa-
tion, since the server would know the positions of the word
in the document, or at least the frequency of a word in a doc-
ument in case the word order is scrambled. Since we only
need to know whether a given document contains a word,
we can use the following trick. We add a count to each
word, which counts how many times that word occurs pre-
viously in that document. For example, the first occurrence
of the word “urgent” is stored as �?��� urgent � , the second oc-
currence as � � � urgent � , etc. This allows Alice to search for

the first occurrence only, if she wishes just to identify the
documents where the word appears; and Bob does not gain
any information about other positions of the search term in
the document. As an additional feature, this encoding al-
lows Alice to search for documents, that contain � or more
occurrences of the word

�
by searching for ���) � � � � .

5.3 Dealing with Variable-Length Words

In our scheme, the minimal unit we can search for is an
individual word. So far we have assumed that the clear text
can be easily broken into a sequence of words of a fixed
length. But this might not be true in a normal text document.
For example, if the minimal unit of search interest is one
English word, then we have to deal with the fact that English
words differ in length.

One possibility is to pick a fixed-size block that is long
enough to contain most words. Words that are too short
or too long may be padded to a multiple of the block size
with some pre-determined padding format. (Note that the
padding cannot be random since Alice needs to know the
padding in order to perform the search.) However, such a
padding scheme would introduce space inefficiency. Also,
for security reasons we cannot decrease the word length be-
low a certain limit.

Another solution is to use variable length words. In this
case, to support random-access decryption, the length of
each word also needs to be stored with the word. One natu-
ral approach is to store the length field before each word in
the file, and to glue the length field and word together as one
word to perform encryption and search using our standard
schemes.

When words lengths may vary, it is important to hide the
length information from the server, because revealing the
length of each word might allow for statistical attacks. For-
tunately, in this case the server does not need to know the
lengths to perform a search: he may just scan through the
file and check for a match at each possible bit boundary.
In this case, the cost of each scan is increased, because the
number of operations is determined by the bit-length of the
document rather than by the number of blocks in the docu-
ment. However, such an approach may provide better space
efficiency than is available with a block-oriented scheme.

5.4 Searching with an Encrypted Index

Sequential scan may not be efficient enough when the
data size is large. For some applications, i.e. large
databases, a common technique to speed up the searching
is to use a pre-computed index. Here we show how we can
answer search queries with the aid of an encrypted index
without sacrificing security.

An index contains a list of key words; with each key
word is a list of pointers to documents where the key word
appears. The key words are words of interest that Alice may
want to search for later. Alice can certainly build the index
of her clear text documents and then encrypt the clear text
and the index and store the ciphertext on Bob. The interest-
ing question is how to encrypt the index.

A naive way would be to just encrypt the key words in
the index and leave the lists of positions in clear. This makes
it easy for Bob to perform search queries on Alice’s behalf,
but also leaks a lot of information to Bob and hence may
allow him to apply various statistical attacks. Therefore, we
reject this naive approach.

A simple way is to also encrypt the document pointers in
each list in the index. Consequently, when Bob searches for
� � � � and finds a match, he returns Alice the encrypted list
of matching positions from the index. Alice may decrypt
the encrypted entries and send Bob another request to re-
trieve the relevant documents. One possible advantage for
this scheme is that the request could be embedded in other
retrievals so that Bob might have uncertainty about the cor-
relation of the search request and the retrieval request for
ciphertext. The disadvantage is that Alice has to spend an
extra round-trip time to retrieve the documents.

If Alice does not want to wait for an extra round-trip
time, or if Alice would like Bob to merge the results of sev-
eral search queries for her, other techniques are also avail-
able. For example, she may encrypt the list of document
pointers in the index using a key

� (related � � � � , i.e.� (� ���#� � � ��� � � � � . Hence, when Alice wants to search
for the word

�
, she will reveal ��� � � �8� � (� to Bob. In

order to prevent Bob from doing statistical analysis on the
index, it is better to keep the lists of pointers in a fixed-size
list. For words that appear infrequently, Alice can pad the
list to the fixed size. For more common words, Alice can
split the long list into several lists with the fixed size; then,
to search for such a word, Alice will need to ask Bob to
perform and merge several search queries in parallel. Note
that by keeping the lists of pointers in a fixed-size list, we
are mainly preventing Bob from learning statistical infor-
mation on the key words that he has not searched. For the
key words that Bob has searched, he might still be able to
learn some statistical information from Alice’s access pat-
tern. This is acceptable from our point of view since Alice
only wants to retrieve relevant documents in the first place.

Note that a general disadvantage for index search is that
whenever Alice changes her documents, she must update
the index. There is a trade-off between how much index Al-
ice updates and how much information Bob might be able to
learn. For example, if Alice does not change the list of doc-
ument pointers for one key word entry when she adds a new
document into Bob’s data storage, Bob would be able to
tell that the key word does not appear in the new document.

Hence, Alice needs to update a substantial part of the index
to hide the real updates which can be quite expensive. It is
an interesting research question to develop schemes which
support more efficient updates.

5.5 More Security Issues

In all our schemes, by allowing Bob to search for a word�
we effectively disclose to him a list of potential locations

where
�

might occur. If we allow Bob to search for too
many words, he may be able to use statistical techniques to
start learning important information about the documents.
One possible defense is to decrease � (so that false matches
are more prevalent and thus Bob’s information about the
plaintext is ‘noisy’), but we have not analyzed the cost-
effectiveness of this tradeoff in any detail.

A better defense is for Alice to periodically change the
key, re-encrypt all the documents under the new key, and re-
order the ciphertext according to some pseudorandom per-
mutation (known to Alice but not to Bob). This will help
prevent Bob from learning correlations or other statistical
information over time. This technique may also be help-
ful if Alice wants to hide from Bob the places where the
searched word occurs in the documents of interest.

In all the schemes we have discussed so far, we must
trust Bob to return all the search results. If Bob holds out on
us and returns only some (but not all) of the search results,
Alice will have no way to detect this. In our scope of inter-
est, we assume Bob does not misbehave in this way. Even
when this type of attack is present, it is possible to combine
our scheme with hash tree techniques [17] to ensure the in-
tegrity of the data and detect such attacks, although a full
description of this countermeasure is out of the scope of the
paper.

6 Related Work

Many researchers have investigated the problem of pro-
viding secrecy and integrity when using an untrusted file
server or external untrusted memory [5, 12, 1, 6]. But as far
as we know, no previous work has provided a solution for
searching on encrypted data. Secure multi-party computa-
tion and oblivious functions are also intensely studied (see,
e.g., [14, 8]). We believe there could be a solution to the
problem of searching on encrypted data using multi-party
computation, but it would require a high overhead, for ex-
ample multiple servers. Our solution only needs one server
to search on encrypted data, and hence is a more practical
solution.

Several researchers have studied the Private Information
Retrieval (PIR) problem [9], so that clients may access en-
tries in a distributed table without revealing which entries
they are interested in. The PIR literature typically aims for

very strong information-theoretic security bounds, which
makes it harder to find practical schemes: PIR schemes of-
ten require multiple non-colluding servers, consume large
amounts of bandwidth, do not guarantee the confidentiality
of the data, do not support private keyword searching, and
do not support controlled searching or query isolation (but
see, e.g., [16, 13, 10, 7] for important exceptions which al-
low to remove some—but not all—of those limitations). In
contrast, although our scheme does not solve the PIR prob-
lem, it needs only a single server (with no impractical trust
assumptions), has low computational complexity, and sup-
ports private keyword searching with very strong security
properties.

7 Conclusion

We have described new techniques for remote searching
on encrypted data using an untrusted server and provided
proofs of security for the resulting crypto systems. Our
techniques have a number of crucial advantages: they are
provably secure; they support controlled and hidden search
and query isolation; they are simple and fast (More specifi-
cally, for a document of length � , the encryption and search
algorithms only need �����	� stream cipher and block cipher
operations); and they introduce almost no space and com-
munication overhead. Our scheme is also very flexible, and
it can easily be extended to support more advanced search
queries. We conclude that this provides a powerful new
building block for the construction of secure services in the
untrusted infrastructure.

Acknowledgments

We would like to thank Doug Tygar for his valuable sug-
gestions and advice. We would also like to thank John Kubi-
atowicz for encouraging the work on the problem of search-
ing on encrypted data. We would also like to thank Bob
Briscoe for his helpful comments on the paper.

References

[1] Nancy Amato and Michael Loui. Checking linked
data structures. In Proceedings of the 24th annual In-
ternational Symposium on Fault-Tolerant Computing,
1994.

[2] M. Bellare. Practice-oriented provable-security. In
Proceedings of First International Workshop on Infor-
mation Security (ISW 97). Springer-Verlag, 1998. Lec-
ture Notes in Computer Science No. 1396.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
concrete security treatment of symmetric encryption:

Analysis of the des modes of operation. In Proceed-
ings of the 38th Annual Symposium on Foundations of
Computer Science. IEEE, 1997.

[4] M. Bellare, J. Kilian, and P. Rogaway. The security
of the cipher block chaining message authentication
code. In CRYPTO’94. Springer-Verlag, 1994. Lecture
Notes in Computer Science No. 839.

[5] Matt Blaze. A cryptographic file system for unix. In
Proceeding of the 1st ACM Conference on Communi-
cations and Computing Security, 1993.

[6] M. Blum, W. Evans, P. Gemmell, S. Kannan, and
M. Noar. Checking the correctness of memories. Al-
gorithmica, 12(2/3), 1994.

[7] C. Cachin, S. Micali, and M. Stadler. Computation-
ally private information retrieval with polylogarith-
mic communication. In EUROCRYPT’99. Springer-
Verlag, 1999. Lecture Notes in Computer Science No.
1592.

[8] R. Canetti. Studies in Secure Multi-Party Computation
and Applications. PhD thesis, Weizmann Institue of
Science, Israel, 1995.

[9] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. In Proceedings of the
68th Annual Symposium on Foundations of Computer
Science. IEEE, 1995.

[10] Benny Chor, Niv Gilboa, and Moni Naor. Private in-
formation retrieval by keywords. Report 98-03, The-
ory of Cryptography Library, 1998.

[11] M. Crispin. Internet message access protocol - version
4. RFC1730, December 1994.

[12] Premkumar T. Devanbu and Stuart G. Stubblebine.
Stack and queue integrity on hostile platforms. In Pro-
ceeding of IEEE Symposium on Security and Privacy,
1998.

[13] Y. Gertner, Y. Ishai, and E. Kushilevitz. Protecting
data privacy in private information retrieval schemes.
In Proceedings of the 30th Annual ACM Symposium
on Theory of Computing. ACM, 1998.

[14] Oded Goldreich. Secure multi-party computation.
Working Draft, 1998.

[15] S. Goldwasser and M. Bellare. Lecture notes on
cryptography. available online from http://www-
cse.ucsd.edu/users/mihir/papers/gb.html.

[16] E. Kusilevitz and R. Ostrovsky. Replication is not
needed: single database, computationally-private in-
formation retrieval. In Proceedings of the 38th An-
nual Symposium on Foundations of Computer Science.
IEEE, 1997.

[17] Ralph C. Merkle. A certified digital signature. In
G. Brassard, editor, CRYPTO89, pages 218–238.
Springer-Verlag, 1990. Lecture Notes in Computer
Science No. 435.

A Proofs of Security

Define � �
�3 N P 3 4 � � Q P R � " by

�
� � � � � 4 �$�.� B (�:K � �CB (�8�,/././M�0B " �:K � � B " ���(�

where we write B 4 � Q as shorthand for the 5 -th block of
1 � � 4 � . Please refer to Section 3 for notation and precise
definitions of security for the primitives � �:K �V1 .

Lemma A.1. If K is a �&78�
��:9 N � -secure pseudorandom
function and 1 is a �&78�V9 4 � -secure pseudorandom generator,
then � �

(defined as above) is a �&7) 6 �:9�! � � -secure pseudo-
random generator, where 9 !�� �F9 N#: 9 4 :
 �&
) � � � � � � Q � �
and the constant

6
is negligible compared to 7 .

Proof. Define � � � � � ��� (�VK � ��� (�8�,/./,/ ��� " �:K � ��� " ���
where � (�./,/./M��� " are
 independent random variables each
drawn from the uniform distribution on

Q
. Also, let @ be a

random variable with the uniform distribution on � Q P R � " .
We will write � � ��� �8@ for the random variables obtained
by choosing

� � � 4 uniformly at random from 3 N P 3 4 .
The goal is to show that � �

and @ are indistinguishable
to any computationally-bounded adversary. The proof will
proceed by showing first that � �

and � are indistinguish-
able, and second that � and @ are indistinguishable.

First, we show that no algorithm with running time 7) 6
can distinguish between � �

and � with advantage better
than 9 4 . Suppose not, i.e., there exists an algorithm � with
running time at most 7) 6 and

Adv � � �"!+#,% � ��� � �$� �.'�) !+#,% � ��� �+� �.' �	� 9 4 /
Then we exhibit an algorithm
 with running time at most 7
which distinguishes the output of 1 from a truly random bit
string with advantage at least 9 4 . The algorithm
 works
in the following way: on input B � � B (�,/././ �AB " � � Q#" , it
runs � on input � � � B (�:K � �CB (�8�./,/./M�0B " �:K � �CB " ��� and halts
with the output � ��� � from � . Note that !$#,%
 �?1 � � 4 � � ��(' �F!$#�% � ��� � �$� �(' and !$#,%
 � @ � �$� �(' ��!$#,% � ��� �+� �.' ,
where @ � is a uniformly-distributed random variable on

Q "
.

Thus we calculate

Adv
 � �"!+#,%
 �-1 � � 4 � � � �('*) !+#,%
 �A@ � �$� �(' �
� �"!+#,% � ��� � � � �('*) !+#,% � �
� � � �.' �
� Adv ��� 9 4 �

which contradicts our assumption that Adv � was large.
Second, we show that no algorithm with running time

7) 6 can distinguish between � and @ with advantage better
than 9�N :
 �
)�� � � � � � Q � � . Suppose not, i.e., there exists
an algorithm � with

Adv � � � !$#,% � ��� �+� �.'�) !$#�% � �A@ �$� �(' � � 9�N :
 �&

) � �� � Q � /

Then we construct an oracle algorithm
 which distin-
guishes K from a truly random function, as follows:

chooses � (�././,/ ��� " uniformly and independently at ran-
dom, queries its oracle � a total of
 times with the in-
puts � * to receive the outputs � ��� * � , runs � on the string
� � ��� (�0� ��� (�8�,/./,/M��� " �A� ��� " ��� , and halts with � ��� � as its
output. We want to show that Adv
 is large. Of course,
!$#,%
 N � � �.' ��!$#�% � �
� � � �.' , so it remains only to char-
acterize !$#�%
 � � �(' , where � is a truly random function
selected uniformly from the set of all maps

Q � R
.

Let E denote the event that the values � (�./,/./M� � " are all
distinct. Also, write E for the complementary event, i.e.,
the case where there exist ,J� 5 with

� 	 ,+;)5 	
 such that
� * � � 4 . Now we may compute

!$#,%
 � � �(' � !$#,%
 � � � � E ' 8.!+#,%E '
: !+#.%
 � � � � E ' 8,!$#�%E '

	 !$#,% � � @ �+� � � E ' 8.!+#,%E ' : !$#�%E '
	 !$#,% � � @ �+� � � E ' 8.!+#,%E '

: !+#.% � �A@ �+� � � � E ' 8,!$#,%E ' : !$#�%E '

	 !$#,% � � @ �+� �(' :
 �

) � �� � Q � /

Without loss of generality, we may assume !+#,%
 N � � �(' �
!$#,%
 � � �.' . Thus,

Adv
 � �"!+#,%
 N � � �('*) !+#,%
 � � �.' �
� � !$#,% � ��� �$� �.'�) !$#,% � � @ �+� �(')
 �&
) � � � � � � Q � � �
� Adv �)
 �
) � � � � � � Q � � � 9 N �

which contradicts our assumption that Adv � was large.
Next, we note that the above two results suffice to show

that no algorithm with running time 7) 6 can distinguish
between � �

and @ with advantage better than 9 N : 9 4 :

 �
) � � � � � � Q � � . Consider any algorithm � that attempts to
distinguish � �

from @ ; then

Adv � � � !$#.% � ��� � �$� �('�) !$#�% � �A@ �+� �(' �
� �"!$#,% � ��� � �$� �('�) !$#�% � �
� �+� �('

: !+#.% � �
� � � �('*) !+#,% � �A@ �+� �.' �
	 �"!$#,% � ��� � �$� �('�) !$#�% � �
� �+� �(' �

: �"!$#,% � �
� �+� �('�) !$#�% � �A@ �+� �(' �
; 9 4 : 9 N :
 �

) � �� � Q �

where the final line follows by applying the previous two
parts of the proof.

Next define �
 �&3 N � " P 3 4 � � Q P R � " by

� � � � � 4 �$� �CB (�:K �
 �CB
(�8�,/././M�0B " �:K � � �CB " �3�8�

where B 4 is defined as before. This is an independently-
keyed version of the construction � �

analyzed in
Lemma A.1. In other words, the key

� � � � (�./,/./M� � " � is a
vector of
 independent random variables that are uniformly
distributed on 35N .

Lemma A.2. If K is a �&78� � �:9�N � -secure pseudorandom
function and 1 is a �&78�:9�4 � -secure pseudorandom genera-
tor, then � (defined as above, with independent keys) is a
�&7) 6 �:9 ! � -secure pseudorandom generator, where 9 ! �

 8,9�N : 9�4 and the constant

6
is negligible compared to 7 .

Proof. The outline of the proof is as in Lemma A.1, except
the second part (the treatment of the indistinguishability of
� and @) must be modified slightly. We define � * (� 	�, 	
�) by

� * � � � � ��� (�VK �
 ���
(�8�,/./,/ ��� * �VK � / ��� 4 �(�

� * � (� � * � (�,/././ ��� " � � " �
where the �

* � (� � * �+@ �./,/./ � � " are independent, uniformly-
distributed random variables on

R
and the � * are as above

(i.e., uniform on
Q

and independent of everything else).
Note, for example, that ��� �2@ and � " � � . Now
we show that each pair of neighbors in the sequence
� � � � (�./,/./ � � " are �-7) 6 �:9 N � -indistinguishable.

Suppose not, i.e., there exists some , and some al-
gorithm � distinguishing � * from � * & (with advantage
Adv � � 9 N . Then we construct an oracle algorithm

 that distinguishes K from a truly random function, as
follows:
 chooses � (�./,/./ � � " � Q ,

� (�./,/./M� � * & (�
3 N , and � * � (�./,/./ � � " � R

independently and uni-
formly at random;
 uses its own key material to com-
pute K �
 ���

(�8�,/./,/ �:K �0/ ��
 ���
* & (� uses its oracle � to compute

� ��� * � ; then
 runs � on the string

� � ��� (�:K �
 ���
(�8�,/././ ��� * & (�:K � & (��� * & (�8�

� * �A� ��� * �(��� * � (� � * � (�././,/ ��� " � � " �
and finally halts with � ��� � as its output. By the definition
of
 , we have !$#�%
 N � � �(' � !+#,% � �
� * �5� �(' . Also, we
see easily that !$#�%
 � � �(' � !$#,% � ��� * & (� � �(' , since the
output of a random function � that is invoked only once is
uniform and independent of everything else in sight. There-
fore, we find that

Adv
 � �"!$#�%
 N � � �('�) !$#�%
 � � �(' �
� �"!+#,% � �
� * �$� �('�) !$#�% � �
� * & (�$� �.' �
� Adv ��� 9 N �

which contradicts our assumption that Adv � was large.
Now a simple application of the triangle inequality suf-

fices to show that no algorithm can �-7) 6 �"
 8-9 N � -distinguish
� " � � from � � � @ : if � is any such algorithm, then

Adv � � �"!$#�% � �
� " �+� �.'�) !$#,% � ��� � �$� �('
	

�
(�� * � " � !$#,% � ���

* �$� �('*) !+#,% � �
� * & (�$� �(' �
;
 8�9 N /

This suffices to complete the proof, since the rest of the
proof of Lemma A.1 now carries through.

We are, at last, ready to consider the construction �
above where now the keys

� *
are not necessarily chosen in-

dependently, but instead are chosen according to some dis-
tribution � on � Q P R � " . We require � to have the follow-
ing property:

Definition 1. We say that a distribution � on the keys� (�././,/M� � " has the twining property if, for all 5 , either (a)
there exists , ;.5 such that !+#�� % �
4 � � * ' � � , or (b) �
selects

�
4
uniformly at random from 3 N , independently of� (�././,/M� � 4 & (.

Theorem A.3. If K is a �-78�"
��V9�N � -secure pseudorandom
function and 1 is a �-78�:9�4 � -secure pseudorandom gener-
ator, and if the key

� � �-35N � � is chosen according to
a distribution � with the twining property, then � is a
�&7) 6 �V9 ! � -secure pseudorandom generator, where 9 ! �

 8J9 N2: 9 42:
 �&
) � � � � � � Q � � and the constant

6
is negligi-

ble compared to 7 .
Proof. First observe that we may, without loss of gen-
erality, reorder the keys so that, for all 5 , either
(a) !$# � % � 4 � � 4 & (' � �

, or (b)
� 4

is selected
uniformly and independently of

� (�././,/M� � 4 & (. Thus,
we obtain a sequence of keys of the form

� �
��� ���(�././,/M� � �(�(� � ���@ �././,/ � ���@ �(�./,/./ � � �� �,/././M� � �� ��� where the� �(� � �@ �./,/./ � � �� are all independent. Let
 * denote the num-
ber of times that key

� �*
is repeated in

�
, and let � be a

function which associates to each , the first 5 such that
!$#�� % � 4 � � �* ' � � .

Now we simply combine the techniques used in the
proofs of Lemma A.1 and Lemma A.2. We use a hybrid
argument as in Lemma A.2, this time defining � * by

� * � � �+� � ��� (�VK �
 ���
(�(�././,/ ��� 4 � & (�VK ��� � ��
 ���

4 � & (�(�
� 4 � � � 4 � �./,/./M��� " � � " �

where we define 5 � �	� ��, : � � . We can see (using the argu-
ments presented in the first part of the proof of Lemma A.1)
that � � � � is �&7) 6 �V9 4 � -indistinguishable from � .
To obtain the desired result, we next show that each pair

of neighbors � * & (� � * in the sequence � � ��� (�,/././ ��� � is
�&7) 6 �V9 N :
 * �&
 *M) � � � � � � Q � � � -indistinguishable.

Suppose not, i.e., there exists some , and some algorithm
� distinguishing � * from � * & (with advantage Adv � �
9 N :
 * �&
 *E)I� � � � � � Q � � . Let 5 �
� ��, � and 5 � �
� ��, : � � .
Then we construct an oracle algorithm
 that distinguishes
K from a truly random function, as follows:
 chooses
� (�./,/./M��� " � Q ,

� �(�././,/ � ���* & (� 3 N , and �
4 �:�./,/./ � � " �R

independently and uniformly at random;
 uses its own
key material to compute K��
 �CB

(�(�./,/./ �VK � � ��
 �CB
4 & (� and

uses its oracle � to compute � �CB 4 �8�0� �CB 4 � (�8�./,/./ �0� �CB 4 � & (� ;
then
 runs � on the string

� � �3��� (�:K �
 ���
(�8�,/./,/M��� 4 & (�:K 4 & (��� 4 & (���8�

��� 4 �0� ��� 4 �8�./,/./ � � 4 � & (�A� ��� 4 � & (�3�8�
��� 4 �"� � 4 �:�./,/./ � � " � � " ���

and finally halts with � ��� � as its output. We have !$#,%
 N � ��(' � !$#�% � �
� * � � �.' . Also, using the argument in the sec-
ond part of the proof of Lemma A.1, we obtain the bound

!+#,%
 � � �.' 	 !+#,% � ��� * & (�+� �(' :
 * �&
 *) � � � � � � Q � �8�
from which we may conclude that Adv
 � Adv �)
 * �&
 *V)� � � � � � Q � � � 9 N , and this contradicts our assumption that
Adv � was large.

Finally, using the triangle inequality, and noting that

�
(�� * � �

 * �
 *M) � �� � Q � 	
 �
) � �� � Q � �

we obtain the desired result.

Next, we consider the security of � when the key ma-
terial is chosen using a pseudorandom function ��
 3ON P
����� ��� � � 3 N instead of using truly random bits. We will
require

� � 3 N to be chosen uniformly at random, inde-
pendent of everything else.

Theorem A.4. Suppose K is a �&78�"
��V9 N � -secure pseudoran-
dom function, � is a �&78�"
��V9 � -secure pseudorandom func-
tion, and 1 is a �-78�:9 4 � -secure pseudorandom generator.
Suppose moreover that we choose the keys

� *
as
� * �

���
� � � * � . Then � will be a �&7)!6 �V9"! � -secure pseudoran-
dom generator, where 9�! �
 8�9 N : 9 : 9 4 :
 �
)� � � � � � Q � � .
Proof. We will show that the resulting distribution � on the
keys has an ‘approximate twining property’, in the sense
that � is computationally indistinguishable from a distri-
bution with the twining property. In particular, the latter
distribution is given by the random variables

� �* � � � � * � ,
where � is a truly random function selected uniformly from
the set of all maps from ����� �	� � to 3 N .

A straightforward simulation argument shows that the
random variables � � � � � 4 � and � � � � � � 4 � are �-7) 6 �V9 � -
indistinguishable. Suppose not, so that there exists an al-
gorithm � that distinguishes those two random variables
with running time at most 7) 6 and advantage Adv � �
9" . Then we show that we can construct an adversary

which �&78�
��:9� � -breaks � . The oracle algorithm
 works
as follows:
 picks

� 4 � 3 4 uniformly at random;

computes �

* ��� � � * � using its oracle � and computes
�CB (�,/././M�0B " � �=1 � � 4 � ; then
 runs � on the string � �
�CB (�VK��
 � B

(�8�,/./,/ �AB " �VK�� � �CB " �3� and finally halts with � ��� �
as its output. We have !$#,%
 � � � �.' ��!$#,% � ��� � � � � 4 � �+��('

and !$#�%
 � � �.' � !+#,% � ��� � � � � � 4 � � � �(' . Thus
Adv
 � Adv � � 9 , which contradicts our assumption
that Adv � is large.

Finally, we note that
� �

has the twining property, so by
Theorem A.3, the random variables � � � � � � 4 � and @ are
�&7) 6 �
$8 9�N : 9�4 :
 �
) � � � � � � Q � � � -indistinguishable.
Applying the triangle inequality completes the proof.

A final goal is to show that the scheme of Section 4.4 is
secure even after we reveal one key

� *
so that a server may

perform a search on our behalf. Let ���
 Q P R � Q be a
projection onto the first component, so that ��� ����� �3�'� � � � .

Theorem A.5. Suppose � is a �-78�"
��:9�� � -secure pseudoran-
dom permutation, K is a �-78�"
��:9 N � -secure pseudorandom
function, � is a �-78�"
��:9 � -secure pseudorandom function, 1
is a �&78�V9�4 � -secure pseudorandom generator, and we choose
the keys

� *
as
� * � � � � ��� * � where � * �	�
� ��� � � � � � * � � � .

Then � will be a �-7) 6 �:9 ! � -secure pseudorandom gener-
ator, where 9 ! �
>8,9�N : 9� : 9�4 :
 �
) � � � � � � Q � � .

Moreover, if we disclose one
� *

and consider the projec-
tion of � where we discard all outputs at positions 5 where� 4 � � * , then we obtain a �&7))6 �:9 �! � -secure pseudoran-
dom generator, where 9 �! �F9"! : 9
� :
 � � Q � .
Proof. The techniques used in the proof of Theorem A.4
apply directly (replacing the

� *
’s with � * ’s), and one may

readily see that � is a �-7)76 �V9"! � -secure pseudorandom
generator.

Now, suppose we disclose
� *

. Let E denote the event that
there exists some 5 with

� 4 �� � * but � 4 � � * . We may
observe that !+#,%E ' 	 9 � :
 � � Q � . Let � � be the distribution
� modified by projecting away all keys at positions 5 where� 4 � � * . Note that � � represents the distribution of key
material for the projected version of � . Also, when condi-
tioned on the event E, the distribution � � has the ‘approx-
imate twining property’ used in the proof of Theorem A.4,
and thus those results apply to the projected version of � .
The desired result follows.

