CS 161 Computer Security
Spring 2010 Paxson/Wagner HW 1

Due February 11, 11:59pm

Instructions: Submit your solution by Thursday, February 11, 11:59pm, in the drop box labelled CS161
in 283 Soda Hall. Print your name, your class account name (e.g., cs161-xy), your TA’s name, the discussion
section time where you want to pick up your graded homework, and “HW1” prominently on the first page.
Staple all pages together. Your solutions must be legible and the solution to each problem must be labelled
clearly. You must work on your own on this homework.

. (20 pts.) A simple web service

You need to write a web service that accepts trouble reports via a web form and then forwards them to a
system administrator. More specifically, the web service should take the text of a message written by the user
explaining the problem and a name for the problem supplied by the user, and your program should email
this information to admin@mysite.com. You do so by invoking the mail program and providing it the
problem explanation on stdin, and the problem name in the email subject via a command-line argument.

Your find the following code on the web to do just this:

void send_mail (char *problem_report, char *problem_name)
{
FILE #*mail_stdin;
char buf[512];
sprintf (buf, "mail -s \"Problem: %s\" admin@mysite.com",
problem name) ;

mail_stdin = popen (buf, "w");
fprintf (mail_stdin, problem_report);
pclose (mail_stdin);

}

Identify at least three security problems with this code. For each problem, provide or describe an example
of an input that would demonstrate or illustrate the existence of the problem.

HINT: Familiarize yourself with the workings of popen () and pclose () if they are new to you. You

can read the manual pages for popen () by typing man popen at a shell prompt on a Unix system.

. (20 pts.) Security principles
Identify the security principle(s) relevant to each of the following scenarios, giving a one or two sentence
explanation for each:

(a) At a closed event where the President will be speaking, there are security guards and metal detectors
at the door, despite the presence of Secret Service agents throughout the hall.

CS 161, Spring 2010, HW 1

s

(b) On trains, there is often a “dead man’s switch” which must be pressed down at all times for the train to
be in motion. If something were to happen to the driver, the switch would be released and the train’s
brakes would be applied.

(c) On overnight school trips, a teacher places masking tape on the outside of all the students’ hotel room
doors, connecting the door to the frame, so that in the morning the teachers will have a way to know if
one of the students snuck out in the middle of the night without permission.

(d) San Francisco Muni buses require those who need to buy tickets to enter at the front. However, the
rear doors are often left open for passengers to disembark, and people sometimes jump on at the back
of the bus without paying the fare.

(e) Electronic music distributors sold their music with DRM (Digital Restriction/Rights Management) so
that users were limited in how they could use the music. In response, some users either used software
to break the DRM or turned to legally questionable sources for their music.

3. (20 pts.) XSS

Prof. Hinkley comes up with what he thinks is a great solution to the problem of cross-site scripting vulner-
abilities. He suggests introducing a new HTML tag, <NOJAVASCRIPT>. In between <NOJAVASCRIPT>
and </NOJAVASCRIPT>, JavaScript is disabled: browsers are supposed to ignore (and in particular, not
execute) any JavaScript that may occur between these two tags. Prof. Hinkley suggests that web devel-
opers can use this to avoid cross-site scripting attacks: they should surround every place in their HTML
page where they are including untrusted content with a <NOJAVASCRIPT> tag. For instance, consider the
following vulnerable code:

w.write ("Hello, " + name + "! TWelcome back.\n");

Because name comes from user input, the above code has a XSS vulnerability. Prof. Hinkley proposes that
instead of writing code like the above, the web developer should use

w.write ("Hello, <NOJAVASCRIPT>" + name
+ "</NOJAVASCRIPT>! Welcome back.\n");

Similarly, instead of writing

w.write ("Today’s most popular link is: "
+ "" + url + "\n");

(which may be vulnerable, since url comes from user input), Prof. Hinkley proposes the web developer
should write

w.write ("Today’s most popular link is: "
+ "<NOJAVASCRIPT><A HREF=\"" + url
+ "\">" 4+ url + "</NOJAVASCRIPT>\n");

List at least two problems with Prof. Hinkley’s proposal.

4. (20 pts.) Spot the bug
Here’s a real security hole that occurred in xt erm. At the time, the xt e rm application ran with permissions
that let it read or write any file (for various reasons that aren’t important here). xterm had a feature that
allowed the user to enable logging, so they could log their terminal session to a file of their choice. Of

CS 161, Spring 2010, HW 1 2

course, the user should only be allowed to enable logging to a file that the user has permission to write (for
instance, we don’t want to allow the user to overwrite the global password file, /et c/passwd). Therefore,
xterm used the following code to ensure that the user has permission to write to the logfile, before writing
toit:

if (access (logfile, W_OK) < 0)

return ERROR;
fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
/* ... write to fd ... */

In this code, access (logfile, W_OK) checks file permissions on the specified file to see whether the
user who launched xt erm has permission to write to the specified file!.

This code has a security vulnerability. What is it?

. (20 pts.) Cookies

When a site sets a cookie on your browser, the cookie is typically associated with the domain of the server,
or a set of domains. For instance, when I visit http://www.paypal.com/, Paypal sets a cookie on
my browser that my browser will send back to the server any time I visit a page on www . paypal .com.
However, the browser will not send this cookie to other third-party sites, like (say) blogger.com or
ha.ckers.org, due to the Same Origin Policy. Similarly, pages from www.paypal.com can set this
cookie to a different value at any time, but other third-party sites (like blogger.comor ha.ckers.orq)
cannot overwrite the value of this cookie.

(a) Why is it important that third-party sites must not be able to see the cookies set by Paypal? What could
go wrong if they could?

(b) Why is it important that third-party sites must not be able to overwrite the cookies set by Paypal? What
could go wrong if they could?

. (0 pts.) Optional: any feedback?

Optionally, feel free to include feedback. What’s the single thing we could to make the class better? Or,
what did you find most difficult or confusing from lectures or the rest of class, and what would you like to
see explained better?

Your answers will not affect your grade. Feel free to be frank: we appreciate all feedback, even (especially)
critical feedback.

!1f you’re curious, xt erm ran with its effective UID set to 0, i.e., root, and its real UID set to the userid of the user who launched
xterm. The manual pages for access () and open () specify their behavior in a bit more detail. However you shouldn’t need
to know all this to answer the question

CS 161, Spring 2010, HW 1 3

