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Principles for Secure Systems
Here are some general principles for secure system design.1

• Security is economics. No system is completely, 100% secure against all attacks. Rather, systems
may only need to resist a certain level of attack. There is no point buying a $10,000 firewall to protect
$1,000 worth of trade secrets.

Also, it is often helpful to quantify the level of effort that an attacker would need to expend to break
the system. Adi Shamir once wrote, “There are no secure systems, only degrees of insecurity.” A lot
of the science of computer security comes in measuring the degree of insecurity.

Analogy: Safes come with a rating of their level of security. For instance, a consumer-grade safe
might indicate that it will resist attack for up to 5 minutes by anyone without tools. A high-end safe
might be rated TL-30: it is secure against a burglar with safecracking tools and limited to 30 minutes
access to the safe. (With such a safe, we know that we need to hire security guards who are able to
respond to any intrusion within 30 minutes.)

A corollary of this principle is you should focus your energy on securing the weakest links. Security
is like a chain: it is only as secure as the weakest link. Attackers follow the path of least resistance,
and they will attack the system at its weakest point. There is no sense putting an expensive high-end
deadbolt on a screen door; an attacker isn’t going to bother trying to pick the lock when he can just
rip out the screen and step through.

• Least privilege. Give a program the set of access privileges that it legitimately needs to do its job—but
nothing more. Try to minimize how much privilege you give each program and system component.

Least privilege is an enormously powerful approach. It doesn’t reduce the probability of failure, but it
can reduce the expected cost of failures. The less privilege that a program has, the less harm it can do
if it goes awry or runs amok. You can think of this as the computer-age version of the shipbuilder’s
notion of “watertight compartments”: even if one compartment is breached, we want to minimize the
damage to the integrity of the rest of the system.

For instance, the principle of least privilege can help reduce the damage caused by buffer overruns. If
a program is compromised by a buffer overrun attack, then it will probably be completely taken over
by an intruder, and the intruder will gain all the privileges the program had. Thus, the fewer privileges
that a program has, the less harm is done if it should someday be penetrated by a buffer overrun attack.

Example: How does Unix do, in terms of least privilege? Answer: Pretty lousy. Every program gets
all the privileges of the user that invokes it. For instance, if I run a editor to edit a single file, the editor
receives all the privileges of my user account, including the powers to read, modify, or delete all my

1Many of them are due to Saltzer and Schroeder, who wrote a classic paper in the 1970s with advice on this topic.
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files. That’s much more than is needed; strictly speaking, the editor probably only needs access to the
file being edited to get the job done.

Example: How is Windows, in terms of least privilege? Answer: Just as lousy. Arguably worse,
because many users run under an Administrator account, and many Windows programs require that
you be Administrator to run them. In this case, every program receives total power over the whole
computer. Folks on the Microsoft security team have recognized the risks inherent in this, and are
taking many steps to warn people away from running with Administrator privileges, so things are
getting better in this respect.

• Use fail-safe defaults. Use default-deny polices. Start by denying all access, then allow only that
which has been explicitly permitted. Ensure that if the security mechanisms fail or crash, they will
default to secure behavior, not to insecure behavior.

Example: A packet filter is a router. If it fails, no packets will be routed. Thus, a packet filter fails
safe. This is good for security. It would be much more dangerous if it had fail-open behavior, since
then all an attacker would need to do is wait for the packet filter to crash (or induce a crash) and then
the fort is wide open.

Example: Long ago, SunOS machines used to ship with + in their /etc/hosts.equiv, which
allowed anyone with root access on any machine on the Internet to log into your machine as root. Irix
machines used to ship with xhost + in their X Windows configuration files by default. This violates
of the principle of fail-safe defaults, since the machines came with an out-of-the-box configuration
that was insecure by default.

• Separation of responsibility. Split up privilege, so no one person or program has complete power.
Require more than one party to approve before access is granted.

Examples: In a nuclear missile silo, two launch officers must agree before the missile can be launched.

Example: In a movie theater, you pay the teller and get a ticket stub; then when you enter the movie
theater, a separate employee tears your ticket in half and collects one half of it, putting it into a
lockbox. Why bother giving you a ticket that 10 feet later is going to be collected from you? One
answer is that this helps prevent insider fraud. Tellers are low-paid employees, and they might be
tempted to under-charge a friend, or to over-charge a stranger and pocket the difference. The presence
of two employees helps keep them both honest, since at the end of the day, the manager can reconcile
the number of ticket stubs collected against the amount of cash collected and detect some common
shenanigans.

Example: In many companies, purchases over a certain amount must be approved both by the request-
ing employee and by a separate purchasing office. This control helps prevent fraud, since it is less
likely that both will collude and since it is unlikely that the purchasing office will have any conflict of
interest in the choice of vendor.

• Defense in depth. This is a closely related principle. There’s a saying that you can recognize a security
guru who is particularly cautious if you see someone wearing both a belt and a set of suspenders.
(What better way to avoid getting caught with your trousers around your ankles?) The principle is
that if you use multiple redundant protections, then all of them would need to be breached before the
system’s security will be endangered.

• Psychological acceptability. It is important that your users buy into the security model.

Example: Suppose the company firewall administrator gains a reputation for capriciously, for no good
reason, blocking applications that the engineers need to use to get their job done. Pretty soon, the
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engineers are going to view the firewall as damage and route around it, maybe setting up tunnels, or
bypassing it in any number of other ways. This is not a game that the firewall administartor is going
to win. No system can remain secure for long when all its users actively seek to subvert it.

Example: The system administrator issues an edict that, henceforth, all passwords will be automati-
cally generated unmemorizable strings that are at least 17 characters long, and must be changed once a
month. What’s likely to happen is that users will simply write down their password on a yellow sticky
attached to their monitor, visible to anyone who looks. Such well-intentioned edicts can ultimately
turn out to be counter-productive.

• Human factors matter. A related topic: Security systems must be usable by ordinary people, and must
be designed to take into account the role humans will play.

Example: Your web browser pops up security warnings all the time, with vague alarming warnings
but no clear indication of what steps you can take and no guidance on how to handle the risk. What
are you going to do? If you’re like most of the user population, you’re soon going to learn to always
click “Ok” any time a security dialogue box pops up.

Example: The NSA’s cryptographic equipment stores its key material on a small physical token. This
token is built in the shape of an ordinary door key. To activate an encryption device, you insert the
key into a slot on the device and turn the key. This interface is intuitively understandable, even for
18-year-olds soldiers out in the field with minimal training in cryptography.

• Ensure complete mediation. When enforcing access control policies, make sure that you check every
access to every object.

Caching is a slightly sticky subject. In some cases, you can get away with not checking every access
and allowing security decisions to be cached, but beware. If the context relevant to the security
decision changes, and the cache entry isn’t invalidated, then someone might get away with accessing
something they shouldn’t.

• Know your threat model. Be careful with old code. The assumptions originally made might no longer
be valid. The threat model may have changed.

Example: In the early days, the Internet was populated only by researchers, who mostly trusted each
other. Many networking protocols designed during those days made assumptions that all other net-
work participants were benign and would not try to harm others. Of course, today the Internet is pop-
ulated by millions of users, who do not always have such benign intent; consequently, many network
protocols designed long ago are now suffering under the strain of attack. Spam is one well-known
example of this syndrome.

• Detect if you can’t prevent. If you can’t prevent break-ins, at least detect them (and, where possible,
provide a way to recover or to identify the perpetrator). Save audit logs so that you have some way to
analyze break-ins after the fact.

Example: FIPS 140-1 sets out a federal standard on tamper-resistant hardware. Type III devices—
the highest level of security in the standard—are intended to be tamper-resistant. However, Type III
devices are very expensive. Type II devices are only required to be tamper-evident, so that if someone
tampers with them, this will be visible (e.g., a seal will be visibly broken). This means they can be
built more cheaply and used in a broader array of applications.

• Don’t rely on security through obscurity. The phrase ‘security through obscurity’ has come to be
understood to refer to systems that rely on the secrecy of their design, algorithms, or source code
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to be secure2. The problem with this is that it is often very hard to keep the design of the system
secret from a dedicated adversary. For instance, every running installation is going to have binary
executable code, and it is tedious but not all that difficult to disassemble and reverse-engineer such
code. Also problematic is that it is very difficult to assess, with any confidence, the chances that the
secret will leak or the difficulty of learning the secret. Moreover, it’s a real bummer if this secret ever
leaks: it is often hard to update widely-deployed systems, so there may be no recourse if someone
ever succeeds in reverse-engineering the code. Historically, security through obscurity has a lousy
track record: many systems that have relied upon the secrecy of their code or design for security have
failed miserably.

This doesn’t mean that open-source applications are necessarily more secure than closed-source appli-
cations. But it does mean that you shouldn’t trust any system that relies on security through obscurity,
and you should probably be skeptical about claims that keeping the source code secret makes the
system significantly more secure.

• Design security in, from the start. Trying to retrofit security to an existing application after it has
already been spec’ed, designed, and implemented is usually a very difficult proposition. At that point,
you’re stuck with whatever architecture has been chosen, and you don’t have the option of decom-
posing the system in a way that ensures least privilege, separation of privilege, complete mediation,
defense in depth, and other good properties. Backwards compatibility is often particularly painful,
because you are stuck with supporting the worst insecurities of all previous versions of the software.

Finally, I’ll end with three principles that are widely accepted in the cryptographic community (although not
often articulated), and that may be useful in computer security as well.

• Conservative design. Systems should be evaluated according to the worst security failure that is at all
plausible, under assumptions favorable to the attacker3. If there is any plausible circumstance under
which the system can be rendered insecure, then it would be prudent to seek a more secure system.

• Kerkhoff’s principle. Cryptosystems should remain secure even when the attacker knows all internal
details of the system. The key should be the only thing that must be kept secret, and the system should
be designed to make it easy change keys that are leaked (or suspected to be leaked). If your secrets
are leaked, it is usually a lot easier to change the key than to replace every instance of the running
software.

• Proactively study attacks. We should devote considerable effort to trying to break our own systems;
this is how we gain confidence in their security. Also, because security is a game where the attacker
gets the last move, and where it can be very costly if a security hole is discovered after a system is
widely deployed, it pays to try to identify attacks before the bad guys find them, so that we have some
lead time to close the security holes before they are exploited in the wild.

2One might hear reasoning like: “this system is so obscure, only 100 people around the world understand anything about it, so
what are the odds that an adversary will bother attacking it?” One problem with such reasoning is that such an approach is self-
defeating. As the system becomes more popular, there will be more incentive to attack it, and then we cannot rely on its obscurity
to keep attackers away.

3I thank Doug Gwyn for this formulation.
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