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1 Asymmetric cryptography
Last lecture, we saw symmetric-key cryptography, where Alice and Bob share a secret key K. However,
symmetric-key cryptography can be inconvenient to use, because it requires Alice and Bob to get together
in advance to establish the key somehow. Asymmetric cryptography, also known as public-key cryptography,
is designed to address this problem.

In a public-key cryptosystem or asymmetric cryptosystem, the recipient Bob has a publicly available key,
his public key, that everyone can access. When Alice wishes to send him a message, she uses his public key
to encrypt her message. Bob also has a secret key, his private key, that lets him decrypt these messages. Bob
publishes his public key but does not tell anyone his private key (not even Alice).

Public-key cryptography provides a nice way to help with the key management problem. Alice can pick a
secret key K for some symmetric-key cryptosystem, then encrypt K under Bob’s public key and send Bob
the resulting ciphertext. Bob can decrypt using his private key and recover K. Then Alice and Bob can
communicate using a symmetric-key cryptosystem, using K as their shared key, from there on.

Public-key cryptography is a remarkable thing. Consider the function that, for a given public key, maps the
message to the corresponding ciphertext. In a good public-key cryptosystem, this function must be easy to
compute, and yet very hard to invert. In other words, it must form a one-way function: a function f such
that given x, it is easy to compute f (x), but given y, it is hard to find a value x such that f (x) = y. We need
the computational equivalent of a process that turns a cow into hamburger: given the cow, you can produce
a hamburger, but there’s no way to restore the original cow from the hamburger. It is by no means obvious
that it should be possible to accomplish this, but this lecture will show you how to do it.

The known methods for public-key cryptography tend to rely heavily upon number theory, so this lecture
will start with a brief number theory refresher, and then show you a public-key encryption algorithm.

2 Algorithms for modular arithmetic
2.1 Simple modular arithmetic
Two n-bit integers can be added, multiplied, or divided by mimicking the usual manual techniques which
are taught in elementary school. For addition, the resulting algorithm takes a constant amount of time to
produce each bit of the answer, since each such step only requires dealing with three bits—two input bits
and a carry—and anything involving a constant number of bits takes O(1) time. The overall time to add two
n-bit integers is therefore O(n), or linear in the bitlength of the integers. Multiplication and division take
O(n2) time, i.e., quadratic time. Also recall that n, the number of bits it takes to represent an integer a in
binary, satisfies n≤ dlog2 ae.
Recall that a mod p is the remainder of the number a modulo p. For instance, 37 mod 10 = 7.
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function ModExp1(a,b, p):
Input: a modulus p, a positive integer a < p, and a positive exponent b
Output: ab mod p

1. Let bn−1 · · ·b1b0 be the binary form of b, where n = dlog2 be.

// Compute the powers ti = a2i
mod s.

2. Set t0 := a mod p.
3. For i := 1 to n−1:
4. Set ti := t2

i−1 mod p.

// Multiply together a subset of these powers.
5. Set r := 1.
6. For i := 0 to n−1:
7. If bi = 1 then set r := r× ti mod p.
8. Return r.

Figure 1: A repeated squaring procedure for modular exponentiation.

Modular arithmetic can be implemented naturally using addition, multiplication, and division algorithms.
To compute a mod p, simply return the remainder upon dividing a by p. By reducing all inputs and answers
modulo p, modular addition, subtraction, and multiplication are easily performed. These operations can all
be performed in O(log2 p) time, since the numbers involved never grow beyond s and therefore have size at
most dlog2 pe bits.

2.2 Modular exponentiation
Modular exponentiation is the task of computing ab mod p, given a, b, and p.

A naive algorithm for modular exponentiation is to repeatedly multiply by a modulo p, generating the se-
quence of intermediate products a2 mod p, a3 mod p, a4 mod p, . . . , ab mod p. Each intermediate product
can be computed from the prior one with a single modular multiplication, which takes O(log2 p) time to
compute, so the overall running time to compute ab mod p products is O(b log2 p). This is exponential in
the size of b, and thus really slow when b is fairly large.

There is a better way to do it. The key to an efficient algorithm is to notice that the exponent of a number
a j can be doubled quickly, by multiplying the number by itself. Starting with a and squaring repeatedly,
we get the powers a1,a2,a4,a8, . . . ,a2blog2 bc

, all modulo p. Each takes just O(log2 p) time to compute, and
they are all we need to determine ab mod p: we just multiply together an appropriate subset of them, those
corresponding to ones in the binary representation of b. For instance,

a25 = a110012 = a100002 ·a10002 ·a12 = a16 ·a8 ·a1.

This repeated squaring algorithm is shown in Figure 1. The overall running time is O(log2 p logb). When
p and b are n-bit integers, the running time is cubic in the input size. This is efficient enough that we can
easily perform modular exponentiation on numbers that are thousands of bits long.

Squaring a number a j is equivalent to left-shifting the binary representation of its exponent. This suggests
determining ab mod s for b = bn−1 · · ·b1b0 by iteratively calculating

abn−1 , then abn−1bn−2 , then abn−1bn−2bn−3 , then · · · , then abn−1bn−2···b0 .
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function ModExp2(a,b, p):
Input: a modulus p, a positive integer a < p, and a positive exponent b
Output: ab mod p

1. Let bn−1 · · ·b1b0 be the binary form of b, where n = dlog2 be.
2. Set r := 1.
3. For i := n−1 downto 0:
4. Set r := r2 mod p.
5. If bi = 1 then set r := r×a mod p.
6. Return r.

Figure 2: Another procedure for modular exponentiation.

Each number in this sequence is computed from the previous one by left-shifting the exponent and possibly
adding one to it (that is, multiplying by a). See Figure 2 for a specification of this alternative algorithm. It
improves the previous algorithm only in the constant factors and has the same asymptotic running time.

2.3 Selecting Large Primes
In the material to follow, we will be working with very large primes: primes that are thousands of bits long.
Let’s look at how to generate a random n-bit prime.

It turns out that it’s easy to test whether a given number is prime. Fermat’s little theorem forms the basis of a
kind of litmus test which helps decide whether a number is prime or not: to test if a number M is prime, we
select an a mod M at random and compute aM−1 mod M. If the result is not 1 then by Fermat’s theorem it
follows that M is not a prime. On the other hand if the result is 1 then this can be shown to provide evidence
that M is indeed prime. With a little more work this forms the basis of an efficient probabilistic algorithm
for testing primality.

For the purpose of selecting a random large prime (several thousand bits long), it suffices to pick a random
number of that length, test it for primality, and repeat until we find a prime of the desired length. The prime
number theorem tell us that among the n-bit numbers, roughly a 1.44

n fraction of them are prime. So after
O(n) iterations of this procedure we expect to find a prime of the desired length.

3 Diffie-Hellman key agreement
Now we’re ready to see our first public-key algorithm. Suppose Alice and Bob are on opposite sides of
a crowded room. They can shout to each other, but everyone else in the room will overhear them. They
haven’t thought ahead to exchange a secret key in advance. How can they hold a private conversation?

It turns out there is a clever way to do it, first discovered by Whit Diffie and Marti Hellman in the 1970s.
Their scheme is known as Diffie-Hellman key agreement, in their honor. At an overview level, it works
something like this.

Alice and Bob first do some work to establish a few parameters. They somehow agree on a large prime p.
For instance, Alice could pick p randomly and then announce it so Bob learns p. The prime p does not need
to be secret; it just needs to be very large. Also, Alice and Bob somehow agree on a number g in the range
1 < g < p− 1. The values p and g are parameters of the scheme that could be hardcoded or identified in
some standard; they don’t need to be specific to Alice or Bob in any way, and they’re not secret.
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Then, Alice picks a secret value a at random from the set {0,1, . . . , p−2}, and she computes A = ga mod p.
At the same time, Bob randomly picks a secret value b and computes B = gb mod p. Now Alice announces
the value A (keeping a secret), and Bob announces B (keeping b secret). Alice uses her knowledge of B and
a to compute

S = Ba mod p.

Symmetrically, Bob uses his knowledge of A and b to compute

S = Ab mod p.

Note that
Ba = (gb)a = gab = (ga)b = Ab (mod p),

so both Alice and Bob end up with the same result, S. Finally, Alice and Bob can use S as a shared key for
a symmetric-key cryptosystem (in practice, we would apply some hash function to S first and use the result
as our shared key, for technical reasons).

The amazing thing is that Alice and Bob’s conversation is entirely public, and from this public conversation,
they both learn this secret value S—yet eavesdroppers who hear their entire conversation cannot learn S. As
far as we know, there is no efficient algorithm to deduce S = gab mod p from A = ga mod p, B = gb mod p, g,
and p. (If there were an efficient algorithm to recover S from A,B, p,g, then this scheme would be insecure,
because an eavesdropper could simply apply that algorithm to what she overhears.) In particular, the fastest
known algorithms for solving this problem take 2cn1/3 log2/3 n time, if p is a n-bit prime. For n = 2048, these
algorithms are far too slow to allow reasonable attacks.

The security of Diffie-Hellman key exchange relies upon the fact that the following function is one-way:
f (x) = gx mod p. In particular, it is easy to compute f (·) (that’s just modular exponentiation), but there is
no known algorithm for computing f−1(·) in any reasonable amount of time.

Here is how this applies to secure communication among computers. In a computer network, each partic-
ipant could pick a secret value x, compute X = gx mod p, and publish X for all time. Then any pair of
participants who want to hold a conversation could look up each other’s public value and use the Diffie-
Hellman scheme to agree on a secret key known only to those two parties. Thus, the work of picking p, g, x,
and X can be done in advance, and each time a new pair of parties want to communicate, they each perform
only one modular exponentiation. Thus this can be an efficient way to set up shared keys.

Here is a summary of Diffie-Hellman key exchange:

• System parameters: a 2048-bit prime p, a value g in the range 2 . . . p−2. Both are arbitrary, fixed,
and public.

• Key agreement protocol: Alice randomly picks a in the range 0 . . . p−2 and sends A = ga mod p to
Bob. Bob randomly picks b in the range 0 . . . p−2 and sends B = gb mod p to Alice. Alice computes
K = Ba mod p. Bob computes K = Ab mod p. Alice and Bob both end up with the same secret key
K, yet as far as we know no eavesdropper can recover K in any reasonable amount of time.

4 El Gamal encryption
You might have noticed a little bit of sleight-of-hand. I promised to show you a public-key encryption al-
gorithm, but that’s not quite what the Diffie-Hellman protocol achieves. Diffie-Hellman is an interactive
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protocol for agreeing on a secret key, which is a little different from a non-interactive algorithm for encrypt-
ing messages. Fair enough: that’s a valid complaint. So, if that left you unhappy, here is a slight twist on
Diffie-Hellman to address the complaint.

In 1985, a cryptographer by the name of Taher Elgamal invented a public-key encryption algorithm based
on Diffie-Hellman. It it usually called El Gamal encryption, in his honor. Here’s how it works. The system
parameters are a large prime p and a value g satisfying 1 < g < p− 1, as in Diffie-Hellman. Bob chooses
a random value b (satisfying 0 ≤ b ≤ p− 2) and computes B = gb mod p. Bob’s public key is B, and his
private key is b. Bob publishes B to the world, and keeps b secret.

Now, suppose Alice has a message m (in the range 1 . . . p−1) she wants to send to Bob, and suppose Alice
knows that Bob’s public key is B. To encrypt the message m to Bob, Alice picks a random value r (in the
range 0 . . . p−2), and forms the ciphertext

(gr mod p,m×Br mod p).

Note that the ciphertext is a pair of numbers, each number in the range 0 . . . p−1.

How does Bob decrypt? Well, let’s say that Bob receives a ciphertext of the form (R,S). To decrypt it, Bob
computes

R−b×S mod p,

and the result is the message m Alice sent him. Why does this decryption procedure work? If R = gr mod p
and S = m×Br mod p (as should be the case if Alice encrypted the message m properly), then

R−b×S = (gr)−b× (m×Br) = g−rb×m×gbr = m (mod p).

If you squint your eyes just right, you might notice that El Gamal encryption is basically Diffie-Hellman,
tweaked slightly. It’s a Diffie-Hellman key exchange, where Bob uses his long-term public key B and where
Alice uses a fresh new public key R = gr mod p chosen anew just for this exchange. They derive a shared
key K = grb = Br = Rb (mod p). Then, Alice encrypts her message m by multiplying it by the shared key
K modulo p. That last step is in effect a funny kind of one-time pad, where we use multiplication modulo
p instead of xor: here K is the key material for the one-time pad, and m is the message, and the ciphertext
is S = m×K = m×Br mod p. Since Alice chooses a new value r independently for each message she
encrypts, we can see that the one-time pad is indeed used only once. And a one-time pad using modular
multiplication is just as secure as xor, for essentially the same reason that a one-time pad with xor is secure:
given any ciphertext S and a hypothesized message m, there is exactly one key K that is consistent with this
hypothesis (i.e., exactly one value of K satisfying S = m×K mod p).

Here is a summary of El Gamal encryption:

• System parameters: a 2048-bit prime p, a value g in the range 2 . . . p−2. Both are arbitrary, fixed,
and public.

• Key generation: Bob picks b in the range 0 . . . p− 2 randomly, and computes B = gb mod p. His
public key is B and his private key is b.

• Encryption: EB(m) = (gr mod p,m×Br mod p) where r is chosen randomly from 0 . . . p−2.

• Decryption: Db(R,S) = R−b×S mod p.
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5 Caveat: Don’t try this at home
A brief warning is in order here. I have shown you the conceptual basis underlying public-key algorithms
that are widely used in practice. However, if you should need a public-key encryption algorithm, please
don’t implement your own based on the description here. I have left out some nitty-gritty implementation
details that are not very relevant at the conceptual level, but are essential for robust security. Instead of
implementing these algorithms yourself, you should just use a well-tested cryptographic library—there are
many of them (OpenSSL, BouncyCastle, etc.).

6 What’s the catch?
This all sounds great—almost too good to be true. We have a way for a pair of strangers who have never
met each other in person to communicate securely with each other. Unfortunately, it is indeed too good to
be true. There is a slight catch. The catch is that if Alice and Bob want to communicate securely using
these public-key methods, they need some way to securely learn each others’ public key. The algorithms
I’ve shown you don’t help Alice figure out what is Bob’s public key; she’s on her own for that.

You might think all Bob needs to do is broadcast his public key, for Alice’s benefit. However, that’s not
secure against active attacks. Attila the attacker could broadcast his own public key, pretending to be Bob:
he could send a spoofed broadcast message that appears to be from Bob, but that contains a public key that
Attila generated. If Alice trustingly uses that public key to encrypt messages to Bob, then Attila will be able
to intercept Alice’s encrypted messages and decrypt them using the private key Attila chose.

What this illustrates is that Alice needs a way to obtain Bob’s public key through some channel that she is
confident cannot be tampered with. That channel does not need to protect the confidentiality of Bob’s public
key, but it does need to ensure the integrity of Bob’s public key. It’s a bit tricky to achieve this.

One possibility is for Alice and Bob to meet in person, in advance, and exchange public keys. In a similar
vein, I know some cryptographers who print their public key on their business card. However, this still
requires Alice and Bob to meet in person in advance. Can we do any better? Next lecture, we’ll see some
methods that partially help with that problem.
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