
CS 161 Computer Security
Spring 2010 Paxson/Wagner Project 1

Due Februrary 18, 11:59pm
In this project you will play the attacker’s role. We will give you two vulnerable programs and you will
create the exploits for them.

Getting Started
You will run the vulnerable programs and their exploits in a virtual machine (VM). VMware Player is in-
stalled on the instructional machines and is also freely available for Windows and Linux. The Mac version
of VMware (VMware Fusion) is available as a free 30-day trial. The VM image that you will use is at http:
//www.eecs.berkeley.edu/˜csturton/classes/cs161/cs161-sp10-vm.tar.gz. The
image is a bare-bones Linux Ubuntu installation. There are two users, root and maluser. Both have the
password cs161proj. To use the image, start VMware Player, select Open a Virtual Machine and
browse to where you’ve stored the image. If it asks whether the VM was moved or copied, select I copied
it.

You will find the debugger gdb very useful for this project; it is worth spending some time becoming com-
fortable with it. To start gdb with a program loaded, type

$ gdb <executable-name>

You can then start running the program with

$ run [arguments-to-the-executable]

Some useful commands are break, step, info frame, info locals, x <address>. If you’re brand new to gdb
it is worth going through a quick tutorial. A basic one is here: http://www.cs.cmu.edu/˜gilpin/
tutorial/. If you just need to remember the commands, a pretty good reference can be found here:
http://www.yolinux.com/TUTORIALS/GDB-Commands.html.

Problems
1. (50 pts.) Buffer Overflow Vulnerability

In your VM image is the directory /home/maluser/Q1. This directory contains the files target-q1.c, exploit-
q1.c, Makefile, shellcode.h. You will modify exploit-q1.c so that it exploits target-q1.

target-q1.c has already been compiled for you. The resulting program is owned by root and has the setuid
bit set. You should not need to recompile this file; we include the source only so that you can inspect it to
find the vulnerability.

CS 161, Spring 2010, Project 1 1

http://www.eecs.berkeley.edu/~csturton/classes/cs161/cs161-sp10-vm.tar.gz
http://www.eecs.berkeley.edu/~csturton/classes/cs161/cs161-sp10-vm.tar.gz
http://www.cs.cmu.edu/~gilpin/tutorial/
http://www.cs.cmu.edu/~gilpin/tutorial/
http://www.yolinux.com/TUTORIALS/GDB-Commands.html

To get started with this problem, read Aleph One’s “Smashing the Stack for Fun and Profit” (http://
insecure.org/stf/smashstack.html). Your task is to exploit the buffer overflow vulnerability
in target-q1 to launch a shell. We provide the malicious code in shellcode.h; you have to cause it to be
executed in target-q1. If you are successful, you will see a root shell prompt:

maluser@cs161:˜/Q1$./exploit-q1
#

Typing exit at the prompt will take you back to your shell. The reason you see a root shell is because target-
q1 is owned by root and has the setuid bit set. Therefore, it runs with the privileges of the file owner
(root) and any program it launches (i.e. /bin/sh) will also run as root.

Submission and Grading For this problem you will submit exploit-q1.c. The grader will log into a clean
VM image as maluser and download your submission file to directory ˜/Q1. A script will then run make,
will run ./exploit-q1, and will check for the existence of the shell prompt. The root password on the VM
used by the grader will be different from the root password you were given. You may also optionally
submit a file, exploit-q1.txt, which includes a description of the vulnerability, how the vulnerability could
be exploited, the stack layout showing absolute locations of the variables you had to be concerned about,
and a brief description of your solution, including how you determined which address to jump to. This
document should be no more than one page and will be used to award you partial credit in the event your
exploit does not work with our automated grading system. Therefore, we strongly encourage you to provide
this explanation.

2. (50 pts.) Format String Vulnerability
The second program you need to exploit is in the directory /home/maluser/Q2. The files in the directory are
target-q2.c, exploit-q2.c, and Makefile. You will modify exploit-q2.c so that it exploits the vulnerable
program, target-q2.c. Again, target-q2.c has already been compiled, is owned by root, and has the setuid
bit set. You should not need to recompile this file; we include the source only so that you can inspect it to
find the vulnerability.

To get started with this problem, read “Exploiting Format String Vulnerabilities” by scut / team teso (http:
//julianor.tripod.com/bc/formatstring-1.2.pdf). The vulnerable program, target-q2,
takes two arguments, username and userid. The first is a string, the second is an unsigned long. The
program uses the userid to determine who gets authenticated—however, you will find that the target program
has been written to not view any userid as having permission to authenticate. If somehow a user gets
authenticated, the program will delete a root-owned file, /root/grades2.txt. Your task is to bypass the
authentication check and get the program to delete the file for you.

Submission and Grading For this problem you will submit exploit-q2.c. The grading will be done as
in Question 1. Success will be determined by whether the file /root/grades2.txt has been deleted. You
may also optionally submit a file, exploit-q2.txt which includes a description of the vulnerability, how the
vulnerability could be exploited, and a brief description of your solution, including an explanation of how
the arguments to target-q2 need to be structured. This document should be no more than one page and will
be used to award you partial credit in the event your exploit does not work. We strongly encourage you to
submit it.

3. (0 pts.) Feedback - Optional
Submit a text file, feedback.txt, with any feedback you may have about this project. What was the hardest

CS 161, Spring 2010, Project 1 2

http://insecure.org/stf/smashstack.html
http://insecure.org/stf/smashstack.html
http://julianor.tripod.com/bc/formatstring-1.2.pdf
http://julianor.tripod.com/bc/formatstring-1.2.pdf

part of this project in terms of understanding? In terms of effort? Or, provide feedback on the class (e.g.,
what’s the single thing we could do to most improve the class?). We appreciate any feedback you may have.
Your answers will not affect your grade.

CS 161, Spring 2010, Project 1 3

