
1

Network Attacks

CS 161 - Computer Security
Profs. Vern Paxson & David Wagner

TAs: John Bethencourt, Erika Chin, Matthew Finifter,
Cynthia Sturton, Joel Weinberger

http://inst.eecs.berkeley.edu/~cs161/

Feb 10, 2010

2

Focus of Today’s Lecture

• Finish discussion of security threats in
TCP
– The problem of “cheaters” who exceed the

allowed transmission rate
– Summary of TCP issues/principles

• Security threats in DHCP and DNS
– Summary of issues/principles

• Note that none of these threats concerns
direct application threats. They all target
the building blocks used by applications.

3

TCPʼs Rate Management
Unless there’s loss, TCP doubles data in flight every
“round-trip”. All TCPs expected to obey (“fairness”).
Mechanism: for each arriving ack for new data,
increase allowed data by 1 maximum-sized packet

D0-99 A100
D100-199

D200-299 A200A300 D D D D

1 2 43

A A A A

8

E.g., suppose maximum-sized packet = 100 bytes

Src

Dest
Time

4

TCP Threat: Cheating on Allowed Rate
How can the destination (receiver) get data to come
to them faster than normally allowed?

D0-99

Src

Dest

1

A25
A50

A75 A100

D100-199

D200-299

2

How do we defend against this?

D300-399

3

D400-499

4

D500-599

5

ACK-Splitting: each ack, even though partial, increases
allowed data by one maximum-sized packet

Time
Change rule to require
“full” ack for all data
sent in a packet

5

TCP Threat: Cheating on Allowed Rate
How can the destination (receiver) still get data to
come to them faster than normally allowed?

D0-99

Src

Dest

1

A100
A200

A300 A400

D100-199

D200-299

2

How do we defend against this?

D300-399

3

D400-499

4

D500-599

5

Opportunistic ack’ing: acknowledge data not yet seen!

Time

6

• Approach #1: if you receive an ack for data you
haven’t sent, kill the connection
– Works only if receiver acks too far ahead

• Approach #2: follow the “round trip time” (RTT)
and if ack arrives too quickly, kill the connection
– Flaky: RTT can vary a lot, so you might kill innocent

connections

• Approach #3: make the receiver prove they
received the data
– Add a nonce (“random” marker) & require receiver to

include it in ack. Kill connections w/ incorrect nonces
o (nonce could be function computed over payload, so sender

doesn’t explicitly transmit, only implicitly)

Keeping Receivers Honest

Note: a protocol change

7

• An attacker who can observe your TCP connection can
manipulate it:
– Forcefully terminate by forging a RST packet
– Inject data into either direction by forging data packets
– Works because they can include in their spoofed traffic the

correct sequence numbers (both directions) and TCP ports
– Remains a major threat today

Summary of TCP Security Issues

8

9

• An attacker who can observe your TCP connection can
manipulate it:
– Forcefully terminate by forging a RST packet
– Inject data into either direction by forging data packets
– Works because they can include in their spoofed traffic the

correct sequence numbers (both directions) and TCP ports
– Remains a major threat today

• An attacker who can predict the ISN chosen by a server
can “blind spoof” a connection to the server
– Makes it appear that host ABC has connected, and has sent data

of the attacker’s choosing, when in fact it hasn’t
– Undermines any security based on trusting ABC’s IP address
– Allows attacker to “frame” ABC or otherwise avoid detection
– Fixed today by choosing random ISNs

• Both highlight flawed “security-by-obscurity” assumption

Summary of TCP Security Issues

10

• TCP limits the rate at which senders transmit:
– TCP relies on endpoints behaving properly to achieve “fairness”

in how network capacity is used
– Protocol lacks a mechanism to prevent cheating
– Senders can cheat by just not abiding by the limits

o Remains a significant threat: essentially nothing today prevents

• Receivers can manipulate honest senders into sending
too fast because senders trust that receivers are honest
– To a degree, sender can validate (e.g., partial acks)
– A nonce can force receiver to only act on data they’ve seen
– Rate manipulation remains a threat today

• General observation: tension between ease/power of
protocols that assume everyone follows vs. violating
– Security problems persist due to difficulties of retrofitting …
– … coupled with investment in installed base

TCP Security Issues, conʼt

11

Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP offer

DHCP request

DHCP ACK

(broadcast)

“offer” message
includes IP address,
DNS server, “gateway
router”, and how long
client can have these
(“lease” time)Threats?

12

Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP offer

DHCP request

DHCP ACK

(broadcast)

“offer” message
includes IP address,
DNS server, “gateway
router”, and how long
client can have these
(“lease” time)

Attacker on same
subnet can hear

new host’s
DHCP request

13

Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP offer

DHCP request

DHCP ACK

(broadcast)

“offer” message
includes IP address,
DNS server, “gateway
router”, and how long
client can have these
(“lease” time)

Attacker can race the actual
server; if they win, replace DNS

server and/or gateway router

14

• Substitute a fake DNS server
– Redirect any of a host’s lookups to a machine of

attacker’s choice

• Substitute a fake “gateway”
– Intercept all of a host’s off-subnet traffic

o (even if not preceded by a DNS lookup)
– Relay contents back and forth between host and

remote server
o Modify however attacker chooses

• An invisible “Man In The Middle” (MITM)
– Victim host has no way of knowing it’s happening

o (Can’t necessarily alarm on peculiarity of receiving multiple
DHCP replies, since that can happen benignly)

• How can we fix this?

DHCP Threats

15

Non-Eavesdropping Threats: DNS
• DHCP attacks show brutal power of attacker who

can eavesdrop

• Consider attackers who can’t eavesdrop - but still
aim to manipulate us via how protocols function

• DNS: path-critical for just about everything we do
–Maps hostnames ⇔ IP addresses
–Design only scales if we can minimize lookup traffic

o #1 way to do so: caching
o #2 way to do so: return not only answers to queries, but

additional info that will likely be needed shortly

• Directly interacting w/ DNS: dig program on Unix
–Allows querying of DNS system
–Dumps each field in DNS responses

16

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Use Unix “dig” utility to look up DNS
address (“A”) for hostname eecs.mit.edu

17

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

These are just comments from dig itself
with details of the request/response

18

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Transaction identifier

19

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Here the server echoes back the
question that it is answering

20

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Answer” tells us its address is 18.62.1.6 and
we can cache the result for 21,600 seconds

21

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Authority” tells us the name servers responsible for
the answer. Each record gives the hostname of a
different name server (“NS”) for names in mit.edu.
We should cache each record for 11,088 seconds.

22

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Additional” provides extra information to save us from
making separate lookups for it, or helps with bootstrapping.

Here, it tells us the IP addresses for the hostnames of the
name servers. We add these to our cache.

23

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

What happens if the mit.edu server
returns the following to us instead?

24

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

We dutifully store in our cache a mapping of
eecs.berkeley.edu to an IP address under
MIT’s control. (It could have been any IP
address they wanted, not just one of theirs.)

25

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

In this case they chose to make the
mapping disappear after 30 seconds.
They could have made it persist for
weeks, or disappear even quicker.

26

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

How do we fix such cache poisoning?

27

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Don’t accept Additional records unless
they’re for the domain we’re looking up

E.g., looking up eecs.mit.edu ⇒ only accept
additional records from *.mit.edu

No extra risk in accepting these since server could
return them to us directly in an Answer anyway.

=

28

DNS Threats, conʼt

What about blind spoofing?

• Say we look up
mail.google.com; how can
an off-path attacker feed us
a bogus A answer before the
legitimate server replies?

• How can such an attacker
even know we are looking up
mail.google.com? Additional information

(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

29

DNS Blind Spoofing, conʼt

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

So this will be k+1

They observe ID k here

Originally, identification field
incremented by 1 for each
request. How does attacker
guess it?

Once they know we’re looking
it up, they just have to guess
the Identification field and reply
before legit server.

How hard is that?

Fix?

30

DNS Blind Spoofing, conʼt

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

Attacker can send lots of replies,
not just one …

However: once reply from legit
server arrives (with correct
Identification), it’s cached and
no more opportunity to poison it.
Victim is innoculated!

Once we randomize the
Identification, attacker has a
1/65536 chance of guessing it
correctly.
Are we pretty much safe?

Unless attacker can send
1000s of replies before legit
arrives, we’re likely safe -
phew!?

