
1

Network Attacks / Control

CS 161 - Computer Security
Profs. Vern Paxson & David Wagner

TAs: John Bethencourt, Erika Chin, Matthew Finifter,
Cynthia Sturton, Joel Weinberger

http://inst.eecs.berkeley.edu/~cs161/

Feb 17, 2010

2

Focus of Today’s Lecture

• Finish discussion of DNS attacks

• Begin discussion of approaches for
controlling network traffic:
– Firewalls: restricting allowed communication
– NATs: Network Address Translators

3

DNS Blind Spoofing, conʼt

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

Attacker can send lots of replies,
not just one …

However: once reply from legit
server arrives (with correct
Identification), it’s cached and
no more opportunity to poison it.
Victim is innoculated!

Once we randomize the
Identification, attacker has a
1/65536 chance of guessing it
correctly.
Are we pretty much safe?

Unless attacker can send
1000s of replies before legit
arrives, we’re likely safe -
phew!?

4

DNS Blind Spoofing (Kaminsky 2008)
• Two key ideas:
–Spoof uses Additional field (rather than Answer)
–Attacker can get around caching of legit replies

by generating a series of different name lookups:

...

5

;; QUESTION SECTION:
;randomk.google.com. IN A

;; ANSWER SECTION:
randomk.google.com 21600 IN A doesn’t matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing, conʼt
For each lookup of randomk.google.com,
attacker returns a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server - so any future X.google.com
lookups go through the attacker’s machine

6

;; QUESTION SECTION:
;randomk.google.com. IN A

;; ANSWER SECTION:
randomk.google.com 21600 IN A doesn’t matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing, conʼt
For each lookup of randomk.google.com,
attacker returns a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server - so any future X.google.com
lookups go through the attacker’s machine

7

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits
Central problem: all that tells a
client they should accept a
response is that it matches the
Identification field.

With only 16 bits, it lacks
sufficient entropy: even if truly
random, the search space an
attacker must brute force is too
small.

Where can we get more
entropy? (Without requiring a
protocol change.)

8

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

DNS (primarily) uses UDP for
transport rather than TCP.

UDP header has:
 16-bit Source & Destination ports
 (identify processes, like w/ TCP)
 16-bit checksum, 16-bit length

 SRC port DST port

checksum length

16 bits 16 bits

UDP Payload

9

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

DNS (primarily) uses UDP for
transport rather than TCP.

UDP header has:
 16-bit Source & Destination ports
 (identify processes, like w/ TCP)
 16-bit checksum, 16-bit length

Src=53 Dest=53

checksum length

16 bits 16 bits

For requestor to receive DNS
reply, needs both correct
Identification and correct ports.

On a request, DST port = 53.
SRC port usually also 53 - but
not fundamental, just convenient

Total entropy: 16 bits

10

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

Src=rnd Dest=53

checksum length

16 bits 16 bits
“Fix”: use random source port

32 bits of entropy makes it
orders of magnitude harder for
attacker to guess all the
necessary fields and dupe victim
into accepting spoof response.

This is what primarily “secures”
DNS today. (Note: not all
resolvers have implemented
random source ports!)

Total entropy: 32 bits

11

• DHCP threats highlight:
– Broadcast protocols inherently at risk of attacker spoofing

o Attacker knows exactly when to try it
– When initializing, systems are particularly vulnerable because

they can lack a trusted foundation to build upon
– Tension between wiring in trust vs. flexibility/convenience
– MITM attacks insidious because no indicators they’re occurring

Summary of DHCP/DNS Security Issues

12

• DHCP threats highlight:
– Broadcast protocols inherently at risk of attacker spoofing

o Attacker knows exactly when to try it
– When initializing, systems are particularly vulnerable because

they can lack a trusted foundation to build upon
– Tension between wiring in trust vs. flexibility/convenience
– MITM attacks insidious because no indicators they’re occurring

• DNS threats highlight:
– Attackers can attack opportunistically rather than eavesdropping

o Cache poisoning only requires victim to look up some name under
attacker’s control

– Attackers can often manipulate victims into vulnerable activity
o E.g., IMG SRC in web page to force DNS lookups

– Crucial for identifiers associated with communication to have
sufficient entropy (= a lot of bits of unpredictability)

– “Attacks only get better”: threats that appears technically
remote can become practical due to unforeseen cleverness

Summary of DHCP/DNS Security Issues

13

Questions?

14

Network Control: Firewalls
• Motivation: How do you harden a set of systems against

external attack?
– Key Observation:

• The more network services your machines run, the greater the risk
– Due to larger attack surface

• One approach: on each system, turn off unnecessary
network services
– But you have to know that it’s running them
– And sometimes some trusted remote users still require access

• Plus key question of scaling
– What happens when you have to secure 100s/1000s of systems?
– Which may have different OSs, hardware & users
– Which may in fact not all even be identified

15

Taming Management Complexity

• Possibly more scalable defense: Reduce risk
by blocking in the network outsiders from
having unwanted access your network
services
– Interpose a firewall the traffic to/from the outside

must traverse
– Chokepoint can cover 1000s of hosts

• Where in everyday experience do we see security
chokepoints?Internet Internal

Network

16

Selecting a Security Policy
• Effectiveness of firewall relies on deciding what policy it

should implement:
– Who is allowed to talk to whom, accessing what service?

• Distinguish between inbound & outbound conns
– Inbound: attempts by external users to connect to services on

internal machines
– Outbound: internal users to external services

• Conceptually simple access control policy:
– Permit inside users to connect to any service
– External users restricted:

• Permit connections to services meant to be externally visible
• Deny connections to services not meant for external access

17

How To Treat Traffic Not Mentioned in Policy?

• Default Allow: start off permitting external
access to services
– Shut them off as problems recognized

• Default Deny: start off permitting just a few
known, well-secured services
– Add more when users complain (and mgt. approves)

• Pros & Cons?
– Flexibility vs. conservative design
– Flaws in Default Deny get noticed more quickly / less

painfully
• (Which do you think UCB uses?)

– Default Allow: institute’s mission thrives on flexibility

In general, use Default Deny

18

Packet Filters
• Most basic kind of firewall is a packet filter

– Router with list of access control rules
– Router checks each received packet against

security rules to decide to forward or drop it
– Each rule specifies which packets it applies to

based on a packet’s header fields
• Specify source and destination IP addresses, port

numbers, and protocol names, or wild cards
• Each rule specifies the action for matching packets:

ALLOW or DROP
<ACTION> <PROTO> <SRC:PORT> -> <DEST:PORT>

– First listed rule has precedence

19

Examples of Packet Filter Rules
allow tcp 4.5.5.4:1025 -> 3.1.1.2:80

• States that the firewall should permit any TCP packet that’s:
– from Internet address 4.5.5.4 and
– using a source port of 1025 and
– destined to port 80 of Internet address 3.1.1.2

deny tcp 4.5.5.4:* -> 3.1.1.2:80
• States that the firewall should drop any TCP packet like the

above, regardless of source port
deny tcp 4.5.5.4:* -> 3.1.1.2:80
allow tcp 4.5.5.4:1025 -> 3.1.1.2:80

• In this order, the rules won’t allow any TCP packets from 4.5.5.4 to
port 80 of 3.1.1.2

allow tcp 4.5.5.4:1025 -> 3.1.1.2:80
deny tcp 4.5.5.4:* -> 3.1.1.2:80

• In this order, the rules allow only TCP packets from 4.5.5.4 to port
80 of 3.1.1.2 if they come from source port 1025

20

Expressing Policy with Rulesets

• Goal: prevent external access to Windows
SMB (TCP port 445)
– Except for one special external host, 8.4.4.1

• Ruleset:
– allow tcp 8.4.4.1:* -> *:445
– drop tcp *:* -> *:445
– allow * *:* -> *:*

• Problems?
– No notion of inbound vs outbound connections

• Drops outbound SMB connections from inside users
– This is a default-allow policy!!

21

• Want to allow:
– Inbound mail connections to our mail server (1.2.3.4:25)
– All outbound connections from our network, 1.2.3.0/24

• 1.2.3/24 = “any address for which the top 24 bits match 1.2.3.0”
• So it ranges from 1.2.3.0, 1.2.3.1, …, 1.2.3.255

– Nothing else
• Consider this ruleset:

allow tcp *:* -> 1.2.3.4:25
allow tcp 1.2.3.0/24:* -> *:*
drop * *:* -> *:*

• This policy doesn't work …
– TCP connections are bidirectional
– 3-way handshake: send SYN, receive SYN+ACK, send ACK, send

DATA w/ ACK bit set

Expressing Policy with Rulesets, con’t

22

Problem: Outbound Connections Fail
1.allow tcp *:* -> 1.2.3.4:25
2.allow tcp 1.2.3.0/24:* -> *:*

3.drop * *:* -> *:*

• Inside host opens TCP connection to port 80 on external machine:
– Initial SYN packet passed through by rule 2
– SYN+ACK packet coming back is dropped

• Fails rule 1 (not destined for port 25)
• Fails rule 2 (source not inside host)
• Matches rule 3 ⇒ DROP

• Fix?
– In general, we need to distinguish between 2 kinds of inbound pkts

• Allow inbound packets associated with an outbound connection
• Restrict inbound packets associated with an inbound connection

– How do we tell them apart?
• Approach #1: remember previous outbound connections (takes state)
• Approach #2: leverage details of how TCP works

