Network Control, Con't

CS 161 - Computer Security Profs. Vern Paxson & David Wagner

TAs: John Bethencourt, Erika Chin, Matthew Finifter, Cynthia Sturton, Joel Weinberger http://inst.eecs.berkeley.edu/~cs161/

Feb 19, 2010

Focus of Today's Lecture

- Finish discussion of packet-filter firewalls
- The general notion of *reference monitors*
- Firewall limitations
- Virtual Private Networks (VPNs)
- Application proxies
- Network Address Translation (NAT)

Problem: Outbound Connections Fail

- 1.allow tcp *:* -> 1.2.3.4:25
 2.allow tcp 1.2.3.0/24:* -> *:*
 3.drop * *:* -> *:*
- Inside host opens TCP connection to port 80 on external machine:
 - Initial SYN packet passed through by rule 2
 - SYN+ACK packet coming back is dropped
 - Fails rule 1 (not destined for port 25)
 - Fails rule 2 (source not inside host)
 - Matches rule $3 \Rightarrow \mathsf{DROP}$
- Fix?
 - In general, we need to distinguish between 2 kinds of inbound pkts
 - Allow inbound packets associated with an outbound connection
 - Restrict inbound packets associated with an inbound connection
 - How do we tell them apart?
 - Approach #1: remember previous outbound connections (takes state)
 - Approach #2: leverage details of how TCP works

Inbound vs. Outbound Connections

- Key TCP feature: ACK bit set on all packets except first
 - Plus: TCP receiver disregards packets with ACK set if they don't belong to an existing connection
- Solution ruleset:

```
1.allow tcp *:* -> 1.2.3.4:25
2.allow tcp 1.2.3.0/24:* -> *:*
3.allow tcp *:* -> 1.2.3.0/24:* only if ACK bit set
4.drop * *:* -> *:*
```

- Rules 1 and 2 allow traffic in either direction for inbound connections to port 25 on machine 1.2.3.4
- -Rules 2 and 3 allow outbound connections to any port

How This Ruleset Protects

- 1.allow tcp *:* -> 1.2.3.4:25
- 2.allow tcp 1.2.3.0/24:* -> *:*
- 3.allow tcp *:* -> 1.2.3.0/24:* only if ACK bit set
- 4.drop * *:* -> *:*
- Suppose external attacker tries to exploit vulnerability in SMB (TCP port 445):
 - = Attempts to open an inbound TCP connection to internal SMB server
- Attempt #1: Sends SYN packet to server
 - Packet lacks ACK bit \Rightarrow no match to Rules 1-3, dropped by Rule 4
- Attempt #2: Sends SYN+ACK packet to server
 - Firewall permits the packet due to Rule 3
 - But then dropped by server's TCP stack (since ACK bit set, but isn't part of existing connection)

Security Principle: Reference Monitors

- Firewalls embody useful principles that are applicable elsewhere in computer security
 - Optimized for enforcing particular kind of access control policy
 - Chokepoint notion makes enforcement possible
- A key conceptual approach to access control: reference monitor
 - Examines <u>every</u> request to access a controlled resource (an *object*) and determines whether to allow request

Reference Monitor Security Properties

- Always invoked
 - Complete mediation property: all security-relevant operations must be mediated by RM
 - RM should be invoked on every operation controlled by access control policy
- Tamper-resistant
 - Maintain RM integrity (no code/state tampering)
- Verifiable
 - Can verify RM operation (correctly enforces desired access control policy)
 - Requires extremely **simple** RM
 - Can't verify correctness for systems with any appreciable degree of complexity

Considering Firewalls as Reference Monitors

- Always invoked?
 - Place Packet Filter on chokepoint link for all internal-external communications
 - Packets only forwarded across link if firewall explicitly decides to do so after inspection

Potential Problems?

- What if a user hooks up an unsecured wireless access point to their internal machine?
- Anyone who drives by with wireless-enabled laptop can gain access to internal network

– Bypasses packet filter!

 To use a firewall safely, must ensure we've covered all links between internal and external networks with firewalls

- Set of links known as the security perimeter

RM Property: *Tamper-Resistant*

- Do not allow management access to firewall other than from specific hosts
 – I.e., firewall itself needs firewalling
- Must secure storage & propagation of configuration data
- Must also protect firewall's physical security

RM Property: Verifiable

- Current practice:
 - Packet filter software too complex for feasible systematic verification ...
- Result:
 - Bugs that allowed attackers to defeat intended security policy by sending unexpected packets that packet filter doesn't handle quite the way it should

Subverting Firewalls

- In addition, packet filters have a fundamentally limited semantic model
 - They lack a full understanding of the meaning of the traffic they carry
 - o In part because operate only at layers 3 & 4; not 7
- One method of subversion: abuse ports
 - Who says that e.g. port 22/tcp = SSH?
 o Why couldn't it be say Skype or BitTorrent?
 o Just requires that client & server agree on app proto

Hiding on Other Ports

- Method #1: use port allocated to another service (how can this be detected?)
- Method #2: tunneling
 - -Encapsulate one protocol inside another
 - Receiver of "outer" protocol decapsulates interior tunneled protocol to recover it
 - -Pretty much <u>any</u> protocol can be tunneled over another (with enough effort)
- E.g., tunneling IP over SMTP

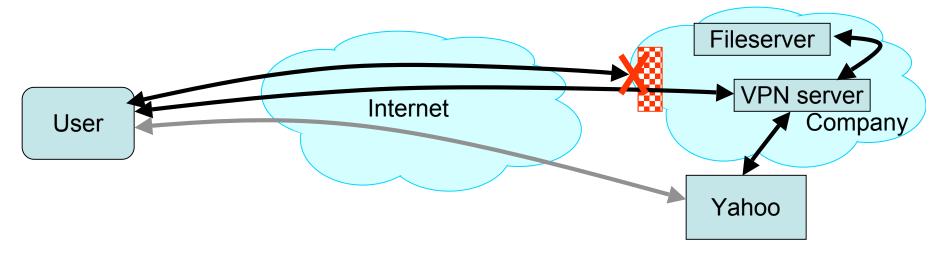
 Just need a way to code an IP datagram as an email message (either mail body or just headers)

Example: Tunneling IP over Email

From: doesnt-matter@bogus.com To: my-buddy@tunnel-decapsulators.R.us Subject: Here's my IP datagram

IP-header-version: 4 IP-header-len: 5 IP-ID: 11234 IP-src: 1.2.3.4 IP-dst: 5.6.7.8 IP-payload: 0xa144bf2c0102...

Program receives this <u>legal</u> email and **builds** an IP packet corresponding to description in email body ...

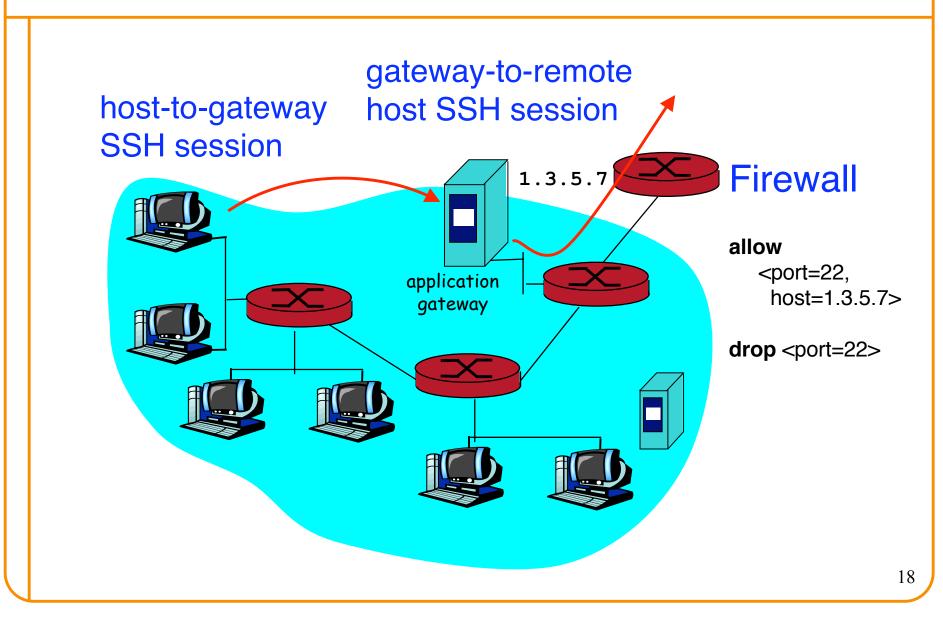

... injects it into the network

How can a firewall detect this??

Tunneling, con't

- E.g., IP-over-ICMP:
 - Encode an IP datagram as the payload of a "ping" packet
- E.g., Skype-over-HTTP:
 - Encode Skype message in URL of requests or header fields (or cookies) of replies
- Note #1: to tunnel, the sender and receiver must both cooperate
- Note #2: tunneling has many legitimate uses too
 - E.g., overlay networks that forward packets along paths different from what direct routing would pick
 - -E.g., Virtual Private Networks (VPNs)
 - o Make a remote machine look like it's local to its home network
 - o Tunnel encrypts traffic for privacy & to prevent meddling

Secure External Access to Inside Machines

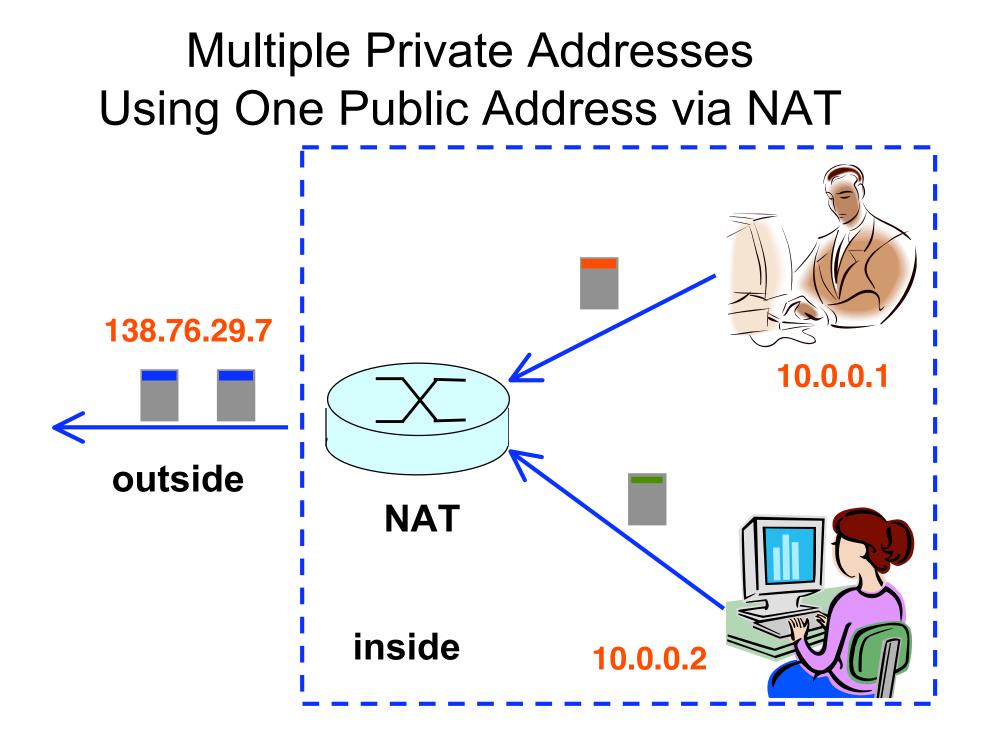

- Often need to provide secure remote access to a network protected by a firewall
 - Remote access, telecommuting, branch offices, ...
- Create secure channel (*Virtual Private Network*, or VPN) to tunnel traffic from outside host/network to inside network
 - Provides Authentication, Confidentiality, Integrity
 - However, also raises perimeter issues

(Try it yourself at http://www.net.berkeley.edu/vpn/)

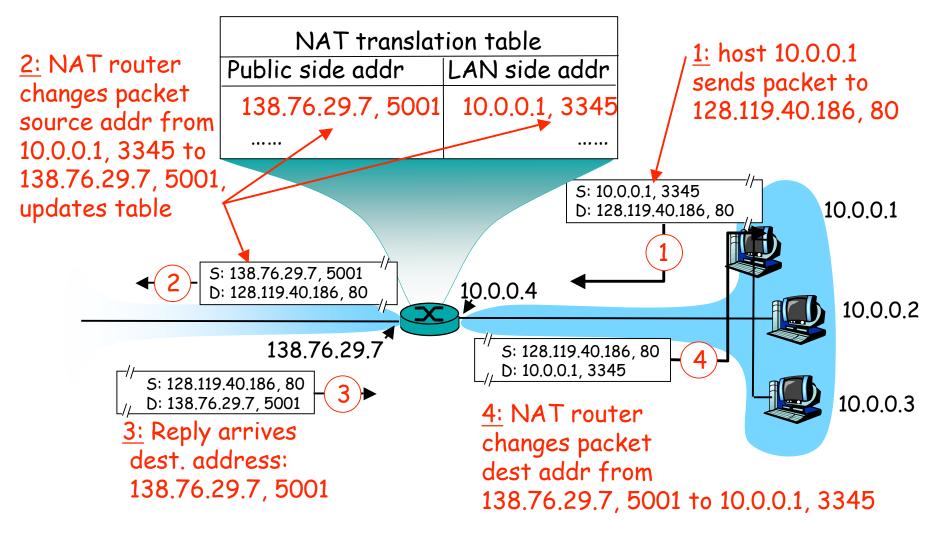
Application Proxies

- Can more directly control applications by requiring them to go through a proxy for external access
 Proxy doesn't just forward, but acts as an applicationlevel middleman
- Example: SSH gateway
 - -Require all SSH in/out of site to go through gateway
 - -Gateway logs authentication, inspects decrypted text
 - Site's firewall configured to prohibit any other SSH access

SSH Gateway Example



Application Proxies


- Can more directly control applications by requiring them to go through a proxy for external access
 Proxy doesn't just forward, but acts as an applicationlevel middleman
- Example: SSH gateway
 - -Require all SSH in/out of site to go through gateway
 - -Gateway logs authentication, inspects decrypted text
 - Site's firewall configured to prohibit any other SSH access
- Provides a powerful degree of monitoring/control, but costs significant resources
 - -Need to run extra server(s) per app
 - Each server requires careful hardening

Network Control: NATs

- To conserve global Internet addresses, network operators often give their systems private addresses
 - Usually numbered out of 10.0.0.0/8 or 192.168.0.0/16
 - These addresses will not work for reaching the hosts from external Internet locations
 - Internet routers lack paths for them
- Hosts communicate externally by having their traffic go through a Network Address Translator (NAT)
 Active, in-path network element
- The NAT translates (maps) private addresses to a public address
 - Also maps TCP/UDP ports

NAT Translation Table

Security Implications of NAT

- If an external packet arrives for which the NAT doesn't have a mapping in its table, it (necessarily) discards it
 - Thus, as a *side effect* a NAT prevents probing of services offered by internal systems
 - (Unless operator explicitly sets up an exception)
- NATs change IP headers (addresses) and transport headers (ports)
 - Thus, any mechanism we might use to ensure layer 3/4 packet integrity will complain that packet has been meddled with
 - (\Rightarrow operator *convenience* from using NAT is at odds with providing basic security guarantees)