Supplementary Networking Slides

* These slides provide more detail than we covered
in lecture

 We don’t in general anticipate drawing upon these
extra points

— If/when we do, we'll strive to explicitly cover them in
lecture

* But they may prove helpful in absorbing the
networking background material

Who Does What?

* Five layers

—Lower three layers implemented everywhere
— Top two layers implemented only at hosts

Application

Transport

Network

Link

Physical

Network

Link

Physical

Application

Transport

Network

Link

Physical

Application

Logical Communication

* Layers interacts with peer’s corresponding layer

Transport

Network

Link

Physical

< » Application
< » Transport
<«—» Network |«——>»| Network
<«—»| Link <«—>»| Link
<«—»| Physical |[«—»{ Physical

Physical Communication

« Communication goes down to physical network

* Then from network peer to peer

* Then up to relevant layer

Applicaticn

Transporit

Network

Link

Physical

Netwaork DU
Link s
Physical I‘

Application

Transport

\Network

_ink

Physical

-

IP Suite: End Hosts vs. Routers

host host
HTTP <+ > HTTP
TCP |< > TCP
I router router I
P < = SO | PSR S > Pt SN 1
Ethernet . [Ethernet SONET SONET Ethernet Ethernet
interface interface interface interface interface interface

-

Layer Encapsulation .

User A User B

- Appl: Get index.html -

- Trans: Connection ID -

- Net: Source/Dest -

Common case: 20 bytes TCP header + 20 bytes IP header
+ 14 bytes Ethernet header = 54 bytes overhead

>

-

The Internet Hourglass

NTP

Waist

(Network Layer)

Ethernet

802.11

Thereis |
The “narrow waist” facilitates interoperability.

Radio The Hourglass Model

ust one network-layer protocol, IP.

"V

-

IP Packet Structure

abit | 4-bit 8-bit _
Version | Header | Type of Service 16-bit Total Length (Bytes)
Length (TOS)
: e e 3-bit _
16-bit Identification Flags | 13-bit Fragment Offset
8'3'::;’.;'.?;)0 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

-

IP Packet Structure

16-bit Identification Flags

4-bit -bit 8-bit _
Version | Header | Type of Service > 16-bit Total Length (Bytes)
\Length (E’Z
3-bit

13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

IP Packet Header Fields

* Version number (4 bits)
— Indicates the version of the IP protocol
— Necessary to know what other fields to expect
— Typically “4” (for IPv4), and sometimes “6” (for IPv6)

* Header length (4 bits)

—Number of 32-bit words in the header
— Typically “5” (for a 20-byte IPv4 header)
— Can be more when IP options are used

* Type-of-Service (8 bits)
— Allow packets to be treated differently based on needs
—E.qg., low delay for audio, high bandwidth for bulk transfer

10

e
IP Packet Structure

Header | Type of Service(| 16-bit Total Length (Bytes)
(TOQ) i

: P 3-bit
16-bit Identification Flagls 13-bit Fragment Offset

Version

4pit | 4-bit st \>

Length

8'3'::;’.;'.?:)0 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

IP Packet Header Fields (Continued)

 Total length (16 bits)

—Number of bytes in the packet
—Maximum size is 65,535 bytes (21° -1)
— ... though underlying links may impose smaller limits

* Fragmentation: when forwarding a packet, an
Internet router can split it into multiple pieces
(“fragments”) if too big for next hop link

* End host reassembles to recover original packet

* Fragmentation information (32 bits)
— Packet identifier, flags, and fragment offset
— Supports dividing a large IP packet into fragments
—... In case a link cannot handle a large IP packet

12

-

IP Packet Structure

abit | 4-bit 8-bit _
Version | Header | Type of Service 16-bit Total Length (Bytes)
Length (TOS)
: e e 3-bit _
16-bit Identification Flags | 13-bit Fragment Offset
8'3'::;’.;'.?;)0 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Ah

32-bit Destination IP Address

IP Packet Header (Continued)

* Two |IP addresses
—Source |IP address (32 bits)
—Destination |IP address (32 bits)

* Destination address
—Unique identifier/locator for the receiving host
—Allows each node to make forwarding decisions

» Source address
—Unique identifier/locator for the sending host
—Recipient can decide whether to accept packet
—Enables recipient to send a reply back to source

TCP Support for Reliable Delivery

- Checksum
— Used to detect corrupted data at the receiver
— ...leading the receiver to drop the packet

. Sequence numbers
— Used to detect missing data
— ... and for putting the data back in order

- Retransmission
— Sender retransmits lost or corrupted data
- Timeout based on estimates of round-trip time
— Fast retransmit algorithm for rapid retransmission

15

-

TCP Header

Number of 4-byte

Source port

Destination port

Sequence number

Acknowled t
words in TCP — crnowledgmen
header; “A(HdrLen|)o | Flags | Advertised window
5 = no options S——
Checksum Urgent pointer

Options (variable)

Data

J

-

TCP Header

“Must Be Zero”
6 bits reserved

Source port

Destination port

Sequence number

Acknowledgment

m/@) Flags | Advertised window

Checksum

Urgent pointer

Options (variable)

Data

"

-

TCP Header

Buffer space

Interpreted as
offset beyond
Acknowledgment
field’s value.

Source port

Destination port

Sequence number

_ Acknowledgment
available for — ——
receiving data. HdrLen| FI @vertised window
Used for TCP’s it — -
sliding window. ecksum Urgent pointer

Options (variable)

Data

J

-

TCP Header

Used with URG
flag to indicate
urgent data (not
discussed further)

Source port

Destination port

Sequence number

Acknowledgment

\HdLLeQ 0 | Flags | Advertised window

[—

Checksum

@rgent pointer>

Options (variable)

Data

J

4)

TCP Segment
< IP Data >
TCP Data (segment) TcP Hdr || IP Hdr
* |P packet

—No bigger than Maximum Transmission Unit (MTU)
—E.qg., up to 1,500 bytes on an Ethernet

« TCP packet
—IP packet with a TCP header and data inside
—TCP header = 20 bytes long

 TCP segment
—No more than Maximum Segment Size (MSS) bytes
—E.qg., up to 1460 consecutive bytes from the stream

%

Sequence Numbers

Host A

ISN (initial sequence number)

Sequence
number = 1st
byte

uu l

TCP Data

TCP
HDR

Host B

ACK sequence
number = next
expected byte

TCP Data

TCP ;
HDR

Initial Sequence Number (ISN)

« Sequence number for the very first byte
—E.g., Why not just use ISN = 07?

 Practical issue
—IP addresses and port #s uniquely identify a connection

— Eventually, though, these port #s do get used again
—... d a chance an old packet is still in flight

— ... and might be associated with new connection

.. TCP requires (RFC793) changing ISN over time

— Set from 32-bit clock that ticks every 4 microseconds
— ... only wraps around once every 4.55 hours

 To establish a connection, hosts exchange ISNs

22

Connection Establishment:
TCP’s Three-Way Handshake

23

-

TCP Header

Flags: gyN
ACK
FIN

Source port Destination port

Sequence number

Acknowledgment

o~
HdrLen g

) Advertised window

RST
PSH
URG

_Flags

Checksum Urgent pointer

Options (variable)

Data

See /usr/include/netinet/tcp.h on Unix Systems

*

-

Step 1: A’s Initial SYN Packet

Flags:

A’s port B's port

A’s Initial Sequence Number

al \}\(Irrelevant since ACK not set)

Y . .
II;Ié\lT < | 5=20B)T}(\Flaﬁ) Advertised window
PSH / Checksum Urgent pointer
URG Optiors-(variable)

A tells B it wants to open a connection...

-

Step 2: B’s SYN-ACK Packet

B's port A’s port
B’s Initial Sequence Number
Flags:/SYN — , —
- ___ ACK=A’sISN plus 1 l/>
\ \\ . .
FIN 20B | (0 Flags | Advertised window
RST e
PSH Checksum Urgent pointer
URG Optiorrs (variable)

B tells A it accepts, and is ready to hear the next byte...

... upon receiving this packet, A can start sending data

%

-

Step 3: A’s ACK of the SYN-ACK

A’s port B's port
__A's Initial Sequence Number
. ——]
Flags: %ND/P<\ B’s ISN plus 1 .
FIN 20B | o | Flags | Advertised window
RST
PSH Checksum Urgent pointer
URG Optiors (variable)

A tells B it’s likewise okay to start sending

.. upon receiving this packet, B can start sending data

7

What if the SYN Packet Gets Lost?
» Suppose the SYN packet gets lost

—Packet is lost inside the network, or:
— Server discards the packet (e.qg., listen queue is full)

* Eventually, no SYN-ACK arrives
— Sender sets a timer and waits for the SYN-ACK
— ... and retransmits the SYN if needed

* How should the TCP sender set the timer?
—Sender has no idea how far away the receiver is

—Hard to guess a reasonable length of time to wait
—SHOULD (RFCs 1122 & 2988) use default of 3 seconds

o Other implementations instead use 6 seconds

28

SYN Loss and Web Downloads

» User clicks on a hypertext link
— Browser creates a socket and does a “connect”
—The “connect” triggers the OS to transmit a SYN

e If the SYN is lost...

— 3-6 seconds of delay: can be very long
—User may become impatient
— ... and click the hyperlink again, or click “reload”

« User triggers an “abort” of the “connect”
—Browser creates a new socket and another “connect”
— Essentially, forces a faster send of a new SYN packet!
—Sometimes very effective, and the page comes quickly

29

Tearing Down the Connection

30

-

\
Normal Termination, One Side At A Time
B
wn
&
é ST z = >z \m X
S Q
sl \e748 & & 2B
A ‘ﬁ o 0 o
time Y T
 Finish (FIN) to close and receive remaining bytes Co:}edior
— FIN occupies one octet in the sequence space now closed
« Other host ack’s the octet to confirm CO””eCtiO{
now half-clogsed
* Closes A’s side of the connection, but not B’s
— Until B likewise sends a FIN Timeout:
— Which A then acks Avoid reincarnation
Can retransmit
FIN ACK if lost

0

-

Normal Termination, Both Together

B 1)
gl 2 \e g &
2 S 7= . P

ﬁ o 0o O ‘ﬁ

A

time
Timeout:
Avoid reincarnation
Can retransmit
FIN ACK |f |OSt Connection
now closed

« Same as before, but B sets FIN with their ack of A’s FIN

2

-

Abrupt Termination

B
92
ééﬁfs P “
sl 2948 & o
‘ﬁ o 0o O
A

eved

RST

time

« Asends a RESET (RST) toB
— E.g., because app. process on A crashed

e That's it
— B does not ack the RST
— Thus, RST is not delivered reliably
— And: any data in flight is lost
— But: if B sends anything more, will elicit another RST

%

-

Layer 7 Example: E-Mail Message Using MIME

MIME version

method used
to encode data

type and subtype

e

encoded data

From: jrex(@cs.princeton.edu

To: feamster@cc.gatech.edu
Subject: picture of my cat
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

Base64 encoded data ...
JVBER1 OijMNJeLj zZ9MNMSAwI

*

-

Example With Received Header

Return-Path: <casado@cs.stanford.edu>
Received: from ribavirin.CS.Princeton.EDU (ribavirin.CS.Princeton.EDU [128.112.136.44])
by newark.CS.Princeton.EDU (8.12.11/8.12.11) with SMTP id k04M5R7Y023164
for <jrex@newark.CS.Princeton.EDU>; Wed, 4 Jan 2006 17:05:37 -0500 (EST)
Received: from bluebox.CS.Princeton.EDU ([128.112.136.38])
by ribavirin.CS.Princeton.EDU (SMSSMTP 4.1.0.19) with SMTP id M2006010417053607946
for <jrex@newark.CS.Princeton.EDU>; Wed, 04 Jan 2006 17:05:36 -0500
Received: from smtp-roam.Stanford.EDU (smtp-roam.Stanford.EDU [171.64.10.152])
by bluebox.CS.Princeton.EDU (8.12.11/8.12.11) with ESMTP id k04M5XNQ005204
for <jrex@cs.princeton.edu>; Wed, 4 Jan 2006 17:05:35 -0500 (EST)
Received: from [192.168.1.101] (adsl-69-107-78-147.dsl.pltn13.pacbell.net [69.107.78.147])
(authenticated bits=0)
by smtp-roam.Stanford.EDU (8.12.11/8.12.11) with ESMTP id k04M5W92018875
(version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT);
Wed, 4 Jan 2006 14:05:32 -0800
Message-ID: <43BC46AF.3030306 @cs.stanford.edu>
Date: Wed, 04 Jan 2006 14:05:35 -0800
From: Martin Casado <casado@cs.stanford.edu>
User-Agent: Mozilla Thunderbird 1.0 (Windows/20041206)
MIME-Version: 1.0
To: jrex@CS.Princeton.EDU
CC: Martin Casado <casado@cs.stanford.edu>
Subject: Using VNS in Class
Content-Type: text/plain; charset=1S0-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

%

-

Layer 7 Example: SMTP interaction

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice(@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter ." on a line by itself
C:

om: alice@crepes.fr
To: hamburger-list@burger-king.com
bject: Do you like ketchup?

C:
Qz:ggi:%bout pickles?

C: S

S: ZSB\Msfsage accepted for delivery
C: QUIT Lone period marks end of message
S: 2

21 hamburger.edu closing connection

(@]

Message body

Message header

%

MAC Address vs. IP Address
* MAC addresses

—Hard-coded in read-only memory when adaptor is built
—Like a social security number

— Flat name space of 48 bits (e.g., 00-OE-9B-6E-49-76)
—Portable, and can stay the same as the host moves

— Used to get packet between interfaces on same network

* |P addresses
— Configured, or learned dynamically
—Like a postal mailing address
— Hierarchical name space of 32 bits (e.g., 12.178.66.9)
— Not portable, and depends on where the host is attached

—Used to get a packet to destination IP subnet
37

