
1

Supplementary Networking Slides

• These slides provide more detail than we covered
in lecture

• We don’t in general anticipate drawing upon these
extra points
– If/when we do, we’ll strive to explicitly cover them in

lecture

• But they may prove helpful in absorbing the
networking background material

2

Who Does What?

• Five layers
– Lower three layers implemented everywhere
–Top two layers implemented only at hosts

Transport
Network
Link
Physical

Transport
Network
Link
Physical

Network
Link
Physical

Application Application

Host A Host BRouter

3

Logical Communication

• Layers interacts with peer’s corresponding layer

Transport
Network
Link
Physical

Transport
Network
Link
Physical

Network
Link
Physical

Application Application

Host A Host BRouter

4

Physical Communication

• Communication goes down to physical network

• Then from network peer to peer

• Then up to relevant layer

Transport
Network
Link
Physical

Transport
Network
Link
Physical

Network
Link
Physical

Application Application

Host A Host BRouter

5

IP Suite: End Hosts vs. Routers

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packetIP packet

6

Layer Encapsulation

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Common case: 20 bytes TCP header + 20 bytes IP header
+ 14 bytes Ethernet header = 54 bytes overhead

7

The Internet Hourglass

Link

Physical

Applications

The Hourglass Model

Waist

There is just one network-layer protocol, IP.
The “narrow waist” facilitates interoperability.

SMTP HTTP NTPDNS

TCP UDP

IP

Ethernet SONET 802.11

Transport

FiberCopper Radio

(Network Layer)

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

10

IP Packet Header Fields
• Version number (4 bits)
– Indicates the version of the IP protocol
–Necessary to know what other fields to expect
–Typically “4” (for IPv4), and sometimes “6” (for IPv6)

• Header length (4 bits)
–Number of 32-bit words in the header
–Typically “5” (for a 20-byte IPv4 header)
–Can be more when IP options are used

• Type-of-Service (8 bits)
–Allow packets to be treated differently based on needs
–E.g., low delay for audio, high bandwidth for bulk transfer

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

12

IP Packet Header Fields (Continued)
• Total length (16 bits)
–Number of bytes in the packet
–Maximum size is 65,535 bytes (216 -1)
–… though underlying links may impose smaller limits

• Fragmentation: when forwarding a packet, an
Internet router can split it into multiple pieces
(“fragments”) if too big for next hop link

• End host reassembles to recover original packet

• Fragmentation information (32 bits)
–Packet identifier, flags, and fragment offset
–Supports dividing a large IP packet into fragments
–… in case a link cannot handle a large IP packet

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

14

IP Packet Header (Continued)
• Two IP addresses
–Source IP address (32 bits)
–Destination IP address (32 bits)

• Destination address
–Unique identifier/locator for the receiving host
–Allows each node to make forwarding decisions

• Source address
–Unique identifier/locator for the sending host
–Recipient can decide whether to accept packet
–Enables recipient to send a reply back to source

15

TCP Support for Reliable Delivery
• Checksum

– Used to detect corrupted data at the receiver
– …leading the receiver to drop the packet

• Sequence numbers
– Used to detect missing data
– ... and for putting the data back in order

• Retransmission
– Sender retransmits lost or corrupted data
– Timeout based on estimates of round-trip time
– Fast retransmit algorithm for rapid retransmission

16

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Number of 4-byte
words in TCP
header;
5 = no options

17

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

“Must Be Zero”
6 bits reserved

18

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Buffer space
available for
receiving data.
Used for TCP’s
sliding window.

Interpreted as
offset beyond
Acknowledgment
field’s value.

19

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used with URG
flag to indicate
urgent data (not
discussed further)

20

TCP Segment

• IP packet
–No bigger than Maximum Transmission Unit (MTU)
–E.g., up to 1,500 bytes on an Ethernet

• TCP packet
– IP packet with a TCP header and data inside
–TCP header ≥ 20 bytes long

• TCP segment
–No more than Maximum Segment Size (MSS) bytes
–E.g., up to 1460 consecutive bytes from the stream

IP Hdr
IP Data

TCP HdrTCP Data (segment)

21

Sequence Numbers
Host A

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ISN (initial sequence number)

Sequence
number = 1st

byte ACK sequence
number = next
expected byte

22

Initial Sequence Number (ISN)
• Sequence number for the very first byte
–E.g., Why not just use ISN = 0?

• Practical issue
– IP addresses and port #s uniquely identify a connection
–Eventually, though, these port #s do get used again
–… ∃ a chance an old packet is still in flight
–… and might be associated with new connection

• ∴ TCP requires (RFC793) changing ISN over time
–Set from 32-bit clock that ticks every 4 microseconds
–… only wraps around once every 4.55 hours

• To establish a connection, hosts exchange ISNs

23

Connection Establishment:
TCPʼs Three-Way Handshake

24

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
ACK
FIN
RST
PSH
URG

See /usr/include/netinet/tcp.h on Unix Systems

25

Step 1: Aʼs Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window5=20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…

26

Step 2: Bʼs SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window20B 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags

27

Step 3: Aʼs ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B itʼs likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data

28

What if the SYN Packet Gets Lost?
• Suppose the SYN packet gets lost
–Packet is lost inside the network, or:
–Server discards the packet (e.g., listen queue is full)

• Eventually, no SYN-ACK arrives
–Sender sets a timer and waits for the SYN-ACK
–… and retransmits the SYN if needed

• How should the TCP sender set the timer?
–Sender has no idea how far away the receiver is
–Hard to guess a reasonable length of time to wait
–SHOULD (RFCs 1122 & 2988) use default of 3 seconds

o Other implementations instead use 6 seconds

29

SYN Loss and Web Downloads
• User clicks on a hypertext link
–Browser creates a socket and does a “connect”
–The “connect” triggers the OS to transmit a SYN

• If the SYN is lost…
– 3-6 seconds of delay: can be very long
–User may become impatient
–… and click the hyperlink again, or click “reload”

• User triggers an “abort” of the “connect”
–Browser creates a new socket and another “connect”
–Essentially, forces a faster send of a new SYN packet!
–Sometimes very effective, and the page comes quickly

30

Tearing Down the Connection

31

Normal Termination, One Side At A Time

• Finish (FIN) to close and receive remaining bytes
– FIN occupies one octet in the sequence space

• Other host ack’s the octet to confirm

• Closes A’s side of the connection, but not B’s
– Until B likewise sends a FIN
– Which A then acks

SY
N

SY
N

 A
C

K

A
CK

D
at

a

FI
N

A
C

K

A
CK

time
A

B

FIN

A
CK

Timeout:
Avoid reincarnation
Can retransmit
FIN ACK if lost

Connection
now half-closed

Connection
now closed

32

Normal Termination, Both Together

• Same as before, but B sets FIN with their ack of A’s FIN

SY
N

SY
N

 A
C

K

A
CK

D
at

a

FI
N

FIN
 + A

C
K

A
CK

time
A

B

A
CK

Connection
now closed

Timeout:
Avoid reincarnation
Can retransmit
FIN ACK if lost

33

Abrupt Termination

• A sends a RESET (RST) to B
– E.g., because app. process on A crashed

• That’s it
– B does not ack the RST
– Thus, RST is not delivered reliably
– And: any data in flight is lost
– But: if B sends anything more, will elicit another RST

SY
N

SY
N

 A
C

K

A
CK

D
at

a

RS
TA

CK

time
A

B

D
ata RS

T

34

Layer 7 Example: E-Mail Message Using MIME

From: jrex@cs.princeton.edu
To: feamster@cc.gatech.edu
Subject: picture of my cat
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

Base64 encoded data ….
JVBERi0xLjMNJeLjz9MNMSAwI
.........................
......base64 encoded data

type and subtype

method used
to encode data

MIME version

encoded data

35

Example With Received Header
Return-Path: <casado@cs.stanford.edu>
Received: from ribavirin.CS.Princeton.EDU (ribavirin.CS.Princeton.EDU [128.112.136.44])
 by newark.CS.Princeton.EDU (8.12.11/8.12.11) with SMTP id k04M5R7Y023164
 for <jrex@newark.CS.Princeton.EDU>; Wed, 4 Jan 2006 17:05:37 -0500 (EST)
Received: from bluebox.CS.Princeton.EDU ([128.112.136.38])
 by ribavirin.CS.Princeton.EDU (SMSSMTP 4.1.0.19) with SMTP id M2006010417053607946
 for <jrex@newark.CS.Princeton.EDU>; Wed, 04 Jan 2006 17:05:36 -0500
Received: from smtp-roam.Stanford.EDU (smtp-roam.Stanford.EDU [171.64.10.152])
 by bluebox.CS.Princeton.EDU (8.12.11/8.12.11) with ESMTP id k04M5XNQ005204
 for <jrex@cs.princeton.edu>; Wed, 4 Jan 2006 17:05:35 -0500 (EST)
Received: from [192.168.1.101] (adsl-69-107-78-147.dsl.pltn13.pacbell.net [69.107.78.147])
 (authenticated bits=0)
 by smtp-roam.Stanford.EDU (8.12.11/8.12.11) with ESMTP id k04M5W92018875
 (version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT);
 Wed, 4 Jan 2006 14:05:32 -0800
Message-ID: <43BC46AF.3030306@cs.stanford.edu>
Date: Wed, 04 Jan 2006 14:05:35 -0800
From: Martin Casado <casado@cs.stanford.edu>
User-Agent: Mozilla Thunderbird 1.0 (Windows/20041206)
MIME-Version: 1.0
To: jrex@CS.Princeton.EDU
CC: Martin Casado <casado@cs.stanford.edu>
Subject: Using VNS in Class
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

36

Layer 7 Example: SMTP interaction
 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: From: alice@crepes.fr
 C: To: hamburger-list@burger-king.com
 C: Subject: Do you like ketchup?
 C:
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

Message header

Message body

Lone period marks end of message

37

MAC Address vs. IP Address
• MAC addresses
–Hard-coded in read-only memory when adaptor is built
– Like a social security number
–Flat name space of 48 bits (e.g., 00-0E-9B-6E-49-76)
–Portable, and can stay the same as the host moves
–Used to get packet between interfaces on same network

• IP addresses
–Configured, or learned dynamically
– Like a postal mailing address
–Hierarchical name space of 32 bits (e.g., 12.178.66.9)
–Not portable, and depends on where the host is attached
–Used to get a packet to destination IP subnet

