Leftovers: Public-Key Infrastructure

3/10/2010

Certificate Chains

Certificate:

{David Wagner's public key is K_{Dave}}_{K⁻¹Arnold}

Certificate chain:

{UC Berkeley's public key is K_{UCB} }_{K⁻¹Arnold} {David Wagner's public key is K_{Dave} }_{K⁻¹UCB}

SSH

All subsequent logins:

Needham-Schroeder

Attacks on Cryptography

3/10/2010

The Security Problem

Wireless networking is just radio communications

- Hence anyone with a radio can eavesdrop, inject traffic

Toys for Hackers

The Security Risk: RF Leakage

The Risk of Attack From Afar

WEP

- The industry's solution: WEP (Wired Equivalent Privacy)
 - Share a single cryptographic key among all devices
 - Encrypt all packets sent over the air, using the shared key
 - Use a checksum to prevent injection of spoofed packets

WEP - A Little More Detail

• WEP uses the RC4 stream cipher to encrypt a TCP/IP packet (P) by xor-ing it with keystream (RC4(K, IV))

A Risk of Keystream Reuse

- In some implementations, IVs repeat.
 - If we send two ciphertexts (C, C') using the same IV, then the xor of plaintexts leaks ($P \oplus P' = C \oplus C'$), which might reveal both plaintexts

Lesson: If RC4 isn't used carefully, it becomes insecure

WEP -- Even More Detail

Attack #2: Spoofed Packets

- Attackers can inject forged 802.11 traffic
 - Learn Z = RC4(K, IV) using previous attack
 - Since the CRC checksum is unkeyed, you can then create valid ciphertexts that will be accepted by the receiver
- Attackers can bypass 802.11 access control
 - All computers attached to wireless net are exposed

Attack #3: Packet Modification

- CRC is linear \Rightarrow CRC(P $\oplus \Delta$) = CRC(P) \oplus CRC(Δ)
 - \Rightarrow the modified packet (P $\oplus \Delta$) has a valid checksum

> Attacker can tamper with packet (P) without breaking RC4

Attack #4: Inductive Learning

- Learn $Z_{1..n} = RC4(K, IV)_{1..n}$ using previous attack
- Then guess Z_{n+1}; verify guess by sending a ping packet ((P, CRC(P))) of length n+1 and watching for a response
- Repeat, for n=1,2,..., until all of RC4(K, IV) is known

Credits: Arbaugh, et al.

Attack #5: Reaction Attacks

TCP ACKnowledgement returned by recipient
⇔ TCP checksum on modified packet (P ⊕ 0x00010001) is valid
⇔ wt(P & 0x00010001) = 1

> Attacker can recover plaintext (P) without breaking RC4

Wardriving / Access Point Mapping

468 WEP 1,265 Clear 1,733 Total