
Securing DNS Lookups

• How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

• Idea #1: do DNS lookups over TLS
– (assuming either we run DNS over TCP, or we use

“Datagram TLS”)

requesting host
xyz.poly.edu gaia.cs.umass.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
(‘umass.edu’, ‘cs.umass.edu’)

dns.cs.umass.edu

7
8

TLD DNS server (‘.edu’)

Securing DNS using SSL / TLS

Host at xyz.poly.edu

wants IP address for
gaia.cs.umass.edu

Idea: connections

{1,8}, {2,3}, {4,5}

and {6,7} all run

over SSL / TLS

Securing DNS Lookups

• How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

• Idea #1: do DNS lookups over TLS
– (assuming either we run DNS over TCP, or we use

“Datagram TLS”)

– Issues?
• Performance: DNS is very lightweight. TLS is not.

• Caching: crucial for DNS scaling. But then how do we keep
authentication assurances?

• Idea #2: make DNS results like certs
– I.e., a signed assertion, providing self-contained

evidence who generated it (via a digital signature)

Operation of DNSSEC

• DNSSEC = standardized DNS security
extensions currently being deployed

1. Suppose we look up mail.google.com
– We get an answer from google.com nameserver (NS)

– Plus: signature for answer (in Additional section)
purportedly signed by google.com NS

2. Look up public key for google.com NS
– That answer is signed by .com NS

3. Look up public key for .com NS
– That answer is signed by root („.‟) NS

4. Root NS‟s public key is wired into our resolver

• All of these keys are cacheable

mail.google.com A 1.2.3.4

mail.google.com?

Client ns1.google.com

DNS:

mail.google.com A 1.2.3.4

SIG 0x1F92..9

mail.google.com?

Client ns1.google.com

DNSSEC:

google.com KEY 0x828C..E

SIG 0x90A4..5

google.com?

Client com‟s NS

Issues With DNSSEC ?

• Issue #1: Replies are Big
– E.g., query for “berkeley.edu” returns 1400+ bytes

– DoS amplification

– Increased latency on low-capacity links

– Headaches w/ older libraries that assume replies < 512B

• Issue #2: Partial deployment
– Suppose .com not signing, though google.com is

– Major practical concern. What do we do?

– Can wire additional key into resolver (doesn‟t scale)

– Or: outsource to trusted third party (“lookaside”)
• Wire their key into resolver, they sign numerous early adopters

Issues With DNSSEC, con’t

• Issue #3: Partial deployment
– What do you do with unsigned/unvalidated results?

– If you trust them, weakens incentive to upgrade

– If you don‟t trust them, a whole lot of things break

• Issue #4: Negative results (“no such name”)
– What statement does the nameserver sign?

– If “gabluph.google.com” doesn‟t exist, then have to do
dynamic key-signing (expensive) for any bogus request

• DoS vulnerability

– Instead, sign (off-line) statements about order of names
• E.g., sign “gabby.google.com followed by gabrunk.google.com”

• Thus, can see that gabluph.google.com can‟t exist

– But: now attacker can enumerate all names that exist :-(

TCP handshake

SYN(t)|ACK(s)

SYN(s)

Client Server

Saves connection info in

table, waits for ACK...
ACK(t)

SYN flooding attack

SYN(t)|ACK(s)

SYN(s)

Victim

Saves connection info in

table, waits for ACK...

Attacker

Attacker repeats this until Victim’s table is full.

SYN cookies (naive)

SYN(t)|ACK(s), state

SYN(s)

Client Server

Saves nothing.

Waits for ACK...
ACK(t), state

Saves connection info

and state in table.

SYN cookies (simplified)

SYN(t)|ACK(s), x

SYN(s)

Client Server

Saves nothing.

Waits for ACK...
ACK(t), x

Checks MAC, saves

connection info in table.

where x =

(state, MAC(state))

SYN cookies (actual)

SYN(x)|ACK(s)

SYN(s)

Client Server

Saves nothing.

Waits for ACK...
ACK(x)

Checks MAC, saves

connection info in table.

where x =

(state, MAC(state))

