
Malware: Worms

CS 161 - Computer Security
Profs. Vern Paxson & David Wagner

TAs: John Bethencourt, Erika Chin, Matthew
Finifter, Cynthia Sturton, Joel Weinberger
http://inst.eecs.berkeley.edu/~cs161/

April 14, 2010

The Problem of Worms
• Virus = code that propagates (replicates) across

systems by arranging to be eventually executed
– Generally infects by altering stored code

• Worm = code that self-propagates/replicates
across systems by arranging to have itself
immediately executed
– Generally infects by altering or initiating running code
– No user intervention required

• Like with viruses, for worms we can separate out
propagation from payload

• Propagation includes notions of targeting & exploit
– How does the worm find new prospective victims?
– How does worm get code to automatically run?

Studying Worms
• Internet-scale events

– Surprising dynamics / emergent behavior
– Hard problem of attribution (who launched it)

• Modeling propagation mathematically
• Evolution / ecosystem

– Shifting perspectives on nature of problem
– Remanence

• “Better” worms
• Thinking about defenses

– Including “white worms”
• Mostly illustrated from a historical perspective …

– Details/dates/names for the most part not important
• Other than Morris Worm, Code Red, and Slammer

The Arrival of Internet Worms
• Internet worms date to Nov 2, 1988 - the

Morris Worm
– Way ahead of its time

• Modern Era begins Jul 13, 2001 with release
of initial version of Code Red

• Exploited known buffer overflow in Microsoft
IIS Web servers
– On by default in many systems
– Vulnerability & fix announced previous month

• Payload #1: web site defacement
– HELLO! Welcome to http://www.worm.com!
Hacked By Chinese!

– Only done if language setting = English

Code Red of Jul 13 2001, con’t

• Payload #2: check day-of-the-month and …
– … 1st through 20th of each month: spread
– … 20th through end of each month: attack

• Flooding attack against 198.137.240.91 …
• … i.e., www.whitehouse.gov

• Spread: via random scanning of 32-bit
IP address space
– Generate pseudo-random 32-bit number; try

connecting to it; if successful, try infecting it; repeat
– Very common (but not fundamental) worm technique

• Each worm uses same random number seed
– How well does the worm spread? Linear growth rate

Code Red, con’t

• Revision released July 19, 2001.
• White House responds to threat of flooding

attack by changing the address of
www.whitehouse.gov

• Causes Code Red to die for date ≥ 20th of the
month due to failure of TCP connection to
establish.
– Author didn’t carefully test their code - buggy!

• But: this time random number generator
correctly seeded. Bingo!

The worm
dies off
globally!

Measurement
artifacts

Number of new hosts
probing 80/tcp as seen
at LBNL monitor of
130K Internet addresses

Modeling Worm Spread

• Worm-spread often well described as infectious epidemic
– Classic SI model: homogeneous random contacts

• SI = Susceptible-Infectible

• Model parameters:
– N: population size
– S(t): susceptible hosts at time t.
– I(t): infected hosts at time t.
– β: contact rate

• How many population members each infected host communicates with per
unit time

• E.g., if host scans 10 Internet addresses per unit time, and 2% of Internet
addresses run a vulnerable server, then β = 0.2

• Auxiliary parameters reflecting the relative proportion of
infected/susceptible hosts
– s(t) = S(t)/N i(t) = I(t)/N s(t) + i(t) = 1

N = S(t) + I(t)
S(0) = I(0) = N/2

Computing How An Epidemic Progresses

• In continuous time:

!

dI

dt
= "# I #

S

N
Increase in
infectibles
per unit time

Total attempted
contacts per
unit time

Proportion of
contacts expected
to succeed

• Rewriting by using i(t) = I(t)/N, S = N - I:

!

di

dt
= "i(1# i) ⇒

!

i(t) =
e
"t

1+ e
"t

Fraction
infected grows
as a logistic

Fitting the Model to Code Red

Exponential
initial growth

Growth slows as
it becomes harder
to find new victims!

Spread of Code Red, con’t

• Recall that # of new infections
scales with contact rate β

• For a scanning worm, β increases with N
– Larger populations infected more quickly!

o More likely that a given scan finds a population member

• Large-scale monitoring finds 359,104 systems
infected with Code Red on July 19
– Worm got them in 13 hours

• That night (⇒ 20th), worm dies due to DoS bug
• What happens on August 1st?

!

dI

dt
= "# I #

S

N

(Again from LBNL monitoring)

Activity starts a bit early
due to systems with
inaccurate clocks!
This is what seeded the
reinfection!

Secondary peak
due to home
systems coming
on in the evening

Reinfection about
1/2 as big as original

Code Red 2

• Released August 4, 2001 (3 days later!)
• Exploits same IIS vulnerability
• String inside the code: “Code Red 2”

– But in fact completely different code base.
• Payload: a root backdoor, resilient to reboots.
• Bug: crashes NT, only works on Win2K.
• Kills original Code Red.
• Localized scanning: prefers nearby

addresses.
• Safety valve: programmed to die Oct 1, 2001.

Striving for Greater Virulence: Nimda

• Released September, 2001.
• Multi-mode spreading:

– attack IIS servers like Code Red & Code Red 2
– email itself to address book as a virus
– copy itself across open network shares
– modify Web pages on infected servers with

browser exploit
– scan for Code Red 2 backdoors (!)

⇒ Worms form an ecosystem!

• Leaped across firewalls
– Ravaged sites that lacked “institutional antibodies”

Code Red 2 kills
off Code Red 1

Code Red 2 settles
into weekly pattern

Nimda enters the
ecosystem

Code Red 2 dies off
as programmed

CR 1
returns
thanks
to bad
clocks

Code Red 2 dies off
as programmed

Nimda hums along,
slowly cleaned up

With its predator
gone, Code Red 1
comes back!, still
exhibiting monthly
pattern

Life Just Before Slammer

Life Just After Slammer

Going Fast: Slammer

• Slammer exploited connectionless UDP
service, rather than connection-oriented TCP

• Entire worm fit in a single packet!
⇒ When scanning, worm could “fire and forget”

 Stateless!

• Worm infected 75,000+ hosts in 10 minutes
(despite broken random number generator).

• At its peak, doubled every 8.5 seconds

The Usual Logistic Growth

Slammer’s Growth
What could have
caused growth to
deviate from the
model?

Hint: at this point the
worm is generating
55,000,000 scans/sec

Answer: the Internet ran
out of carrying capacity!
(Thus, β decreased.)
Access links used by
worm completely clogged.
Caused major collateral
damage.

