Detecting Attacks, Part 2

CS 161 - Computer Security

Profs. Vern Paxson & David Wagner

TAs: John Bethencourt, Erika Chin, Matthew
Finifter, Cynthia Sturton, Joel Weinberger

http://inst.eecs.berkeley.edu/~cs161/

April 9, 2010

Announcements

« Homework #4 is out
— Due next Thursday 5SPM

* My office hours next Monday are 2:30-3:30

Styles of Detection: Signature-Based

 |dea: look for activity that matches the structure of
a known attack
 Example (from the freeware Snort NIDS):

alert tcp S$EXTERNAL NET any -> $SHOME NET
139 flow:to server,established

content:" |eb2f 5feb 4a5e 89fb 893e 89f2|"
msqg: "EXPLOIT x86 linux samba overflow"
reference:bugtraq, 1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

« Can be at different semantic layers,
e.g.: IP/TCP header fields; packet payload; URLs

Sighature-Based Detection, con’t

* E.g. for FooCorp, search for “../../" or “/etc/passwd”

* What's nice about this approach?
— Conceptually simple
— Takes care of known attacks (of which there are zillions)
— Easy to share signatures, build up libraries

 What's problematic about this approach?
— Blind to novel attacks

— Might even miss variants of known attacks (“..///.//..I")
« Of which there are zillions

— Simpler versions look at low-level syntax, not semantics

« Can lead to weak power (either misses variants, or generates
lots of false positives)

Styles of Detection: Anomaly-Based

* |dea: attacks look peculiar.

« High-level approach: develop a model of normal
behavior (say based on analyzing historical logs).
Flag activity that deviates from it.

« FooCorp example: maybe look at distribution of
characters in URL parameters, learn that some are
rare and/or don’t occur repeatedly
— If we happen to learn that ‘.’s have this property, then

could detect the attack even without knowing it exists

* Big benefit: potential detection of a wide range of
attacks, including novel ones

Anomaly Detection, con’t

 What's problematic about this approach?
— Can fail to detect known attacks

— Can fail to detect novel attacks, if don’t happen
to look peculiar along measured dimension

— What happens if the historical data you train on
includes attacks?

— Base-rate fallacy particularly acute: if prevalence
of attacks is low, then you're more often going to
see benign outliers

* High FP rate

« OR: require such a stringent deviation from “normal”
that most attacks are missed

Specification-Based Detection

ldea: don’t learn what's normal; specify what's
allowed

FooCorp example: decide that all URL parameters
sent to foocorp.com servers must have at most
one /" in them
— Flag any arriving param with > 1 slash as an attack
What's nice about this approach?
— Can detect novel attacks
— Can have low false positives

 If FooCorp audits its web pages to make sure they comply
What's problematc about this approach?

— Expensive: lots of labor to derive specifications
» And keep them up to date as things change (“churn”)

Styles of Detection: Behavioral

|dea: don’t look for attacks, look for evidence of
compromise

FooCorp example: inspect all output web traffic for
any lines that match a passwd file

Example for monitoring user shell keystrokes:
unset HISTFILE

Example for catching code injection: look at

sequences of system calls, flag any that prior

analysis of a given program shows it can't generate

— E.g., observe process executing read(), open(), write(),
fork(), exec()

— ... but there’s no code path in the (original) program that
calls those in exactly that order!

Behavioral-Based Detection, con’t

* What's nice about this approach?
— Can detect a wide range of novel attacks

— Can have low false positives
* Depending on degree to which behavior is distinctive
* E.g., for system call profiling:

— Can be cheap to implement
« E.g., system call profiling can be mechanized

 What's problematic about this approach?

— Post facto detection: discovers that you definitely have a
problem, w/ no opportunity to prevent it

— Brittle: depending on behavior, attacker can avoid it

« Easy enough to not type “unset HISTFILE"

* How could they evade system call profiling?
— Mimicry: adapt injected code to comply w/ allowed call sequences

The Problem of Evasion

* For any detection approach, we need to consider
how an adversary might (try to) elude it

— Note: even if the approach is evadable, it can still be
useful to operate in practice

— But if it's very easy to evade, that’s especially worrisome
(security by obscurity)

« Some evasions reflect incomplete analysis
— In our FooCorp example, hex escapes or “..////./]..I" alias

— In principle, can deal with these with implementation
care (make sure we fully understand the spec)

The Problem of Evasion, con’t

Some evasions exploit deviation from the spec

— E.g., double-escapes for SQL injection:
%25%32%37 = %27 = '

Some can exploit more fundamental ambiguities:

— Problem grows as monitoring viewpoint increasingly
removed from ultimate endpoints

 Lack of end-to-end visibility
Particularly acute for network monitoring

Consider detecting occurrences of the string
“root” inside a network connection ...

— We get a copy of each packet
— How hard can it be?

Detecting “root”: Attempt #1

e Method: scan each packet for r’, ‘o', ‘o', ‘t’

Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters ...

1 lllllllllllrootlllllllllllllllllllllll

Are we done?

Oops: TCP doesn’t preserve text boundaries

2

lllllllllllro otlllllllllllllllllllllll

Fix?

Detecting “root”: Attempt #2

e Okay: remember match from end of previous packet

2

llllllllll!lro otllllllllllllllllllllllll

When 2nd packet arrives, continue working on the match

- Now we’re managing state :-(
Are we done?

Oops: TCP doesn’t guarantee in-order arrival

2

|
otllllllllllllllllll‘llll' i lll.lllllllro

Detecting “root”: Attempt #3

Fix?

We need to reassemble the entire TCP bytestream
— Match sequence numbers

— Buffer packets with later data (above a sequence “hole”)
Issues”?

— Potentially requires a lot of state

— Plus: attacker can cause us to exhaust state by sending
lots of data above a sequence hole

But at least we're done, right”?

" I
Full TCP Reassembly is Not Enough

- seq=@

e : L]
E) - seq=1(TTL=16 ‘ N
3 seq=2, TTL=16 :| Packet discarded in transit due |
1 : to TTL ho unt expirin
z - seq=2, TTL=22 ‘ P p>-9—J (;DU
- =3, TTL=16 8
g seq=3, TTL= : “ <
seq=3, TTL=22 : =
é - 4, TTL=22 . '
(e = ® e
- seq=4, TTL=16 é v
. N\
reot
TTL field in IP header rice? roce? rict? roct? Acsume the Receiver
specifies maximum riot? rdéot2%idh2.2ooe? S?“ZOeh
forwarding hop count nice? 2n00t? ' Ops away
\niot? noot? nioe? nooe? _
NIDS /| Assume NIDS is 15 hops away

Inconsistent TCP Retransmissions

o Fix?
« ldea: NIDS can alert upon seeing a retransmission
inconsistency, as surely it reflects someone up to no good

e This doesn’t work: TCP retransmissions broken in this
fashion occur in live traffic
— Rare (a few a day at ICSI)
— But real evasions much rarer still (Base Rate Fallacy)
=> This is a general problem with alerting on such ambiguities

 l|dea: if NIDS sees such a connection, kill it
— Works for this case, since benign instance is already fatally broken
— But for other evasions, such actions have collateral damage
 |dea: rewrite traffic to remove ambiguities
— Works for network- & transport-layer ambiguities
— But must operate in-line and at line speed

Summary of Evasion Issues

Evasions arise from uncertainty (or incompleteness)
because your detector must infer behavior/processing it
can’t directly observe

— A general problem any time detection separate from potential target

One general strategy: impose canonical form (“normalize™)
— E.g., rewrite URLs to expand/remove hex escapes

Another strategy: analyze all possible interpretations rather
than assuming one
— E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL ...

Another: proactively determine how processing will occur
— E.g., probe your own server w/ directory traversal URL, see if
passwd file leaks
 If not: don’t bother alerting on attack attempt!

— Fits w/ prudent general strategy of regularly scanning your own site

NIDS vs. HIDS

* NIDS benefits:

— Can cover a lot of systems with single deployment
* Much simpler management

— Easy to “bolt on” / no need to touch end systems
— Doesn’t consume production resources on end systems
— Harder for an attacker to subvert / less to trust

« HIDS benefits:

— Can have direct access to semantics of activity
» Better positioned to block (prevent) attacks
* Harder to evade

— Can protect against non-network threats

— Visibility into encrypted activity

— Performance scales much more readily (no chokepoint)
* No issues with “dropped” packets

