Paxson C5 161
Spring 2011 Computer Security

Discussion 4

February 16, 2011

Question 1 Firewall Misconfiguration
Suppose you had a rule set that looked like this:

1.

drop tep 10.1.1.0/25:% *:*

2. allow udp *:* 192.168.1.0/24:*
3. drop tep 10.1.1.128/25:% *:*

4.
)
6

drop udp 172.16.1.0/24:* 192.168.1.0/24:*

. allow tep 10.1.1.0/24:% *:*
. drop udp 10.1.1.0/24:* 192.168.0.0/16:*
7.

allow udp 172.16.1.0/24:* *:*

(8 min)

Which rules contradict one another? Can you find more than one example?

Hint: Look for when all the packets one rule intends to deny (accept) gets accepted
(denied) by a preceding rule?

Solution: Rules 2 and 4 contradict each other. All packets to 192.168.1.0/24 are
accepted by rule 2, but rule 4 denies the subset of packets from 172.16.1.0/24 to
192.168.1.0/24. This is called shadowing.

Rule 5 is shadowed by the combination of rules 1 and 3. Rule 1 denies any IP that
matches the first 24 bits 10.1.1, followed by a single 0 bit. Rule 3 denies any IP that
matches the first 24 bits 10.1.1, followed by a 1 bit. Combined, this is equivalent to
denying any IP that matches 10.1.1, which is what rule 5 states.

Question 2 Denial-of-Service (DoS)
In 2007, a large broadband provider in the United States was attacking end users’ Bit-
Torrent connections with a layer-4 Denial-of-Service (DoS) attack. For each BitTorrent
connection, the provider injects a single packet into the network, which tears down the
connection.

(a) How might this have worked?

(7 min)

(b) Does TCP defend against this attack? Explain how it does or why it does not.

(c) How could a different attacker (not the ISP) launch this attack? Assume that the

attacker is another home broadband user.

Page 1 of 4

Solution:

(a) The ISP can send a single RST packet to tear down a TCP connection, as
specified by the protocol.

(b) TCP cannot defend against this attack because the ISP is in the path between
the two connection endpoints. The ISP only needs to look at the TCP sequence
number and inject a packet with the right sequence number.

The ISP does not need to resort to blind spoofing, i.e., guess the correct sequence
number. This is true for any eavesdropping adversary and in particular for a
man-in-the-middle (MITM) attack.

(c) A different attacker who does not sit in the path between the two connection
endpoints would have to blind spoof a TCP sequence number (i.e., guess the
TCP right sequence number) in order to inject a RST packet that would be
accepted. This is much harder.

Question 3 Circumventing Network Policy Controls (5 min)
You are stuck at the Chicago O’Hare airport for at least 7 more hours, and the airport
does not have free WiFi. How boring! Since you are unwilling to pay the offensive fees
the hotspot provider demands to access the Internet, you start to explore what you can
do with the limited connectivity. Quickly you find out that all connections to Internet
hosts are blocked. You also discover that the DNS server of the hotspot answers queries
for any hostname in the Internet.

As an exceptionally studious and forward-looking CS 161 student, you were prepared for
this scenario of Internet deprivation and set up your own DNS infrastructure prior to
leaving on your trip. How is it possible to get free WiFi access in this scenario? What
needed to happen prior to the trip?

Solution: In this scenario, you can tunnel Internet traffic through DNS. The key
idea is to encapsulate your traffic into DNS queries that you send to a DNS server in
the Internet under your control. This server decapsulates the DNS queries and relays
the data to its intended destination, stuffs the response traffic into a DNS reply and
ships it back to you.

For this to work, you must have setup a DNS server and a tunnel domain prior to
leaving on the trip. Assume you own the domain cs161.edu and you would like to
use t.cs161.edu as the tunnel subdomain.! Further, assume that the IP address of

Discussion 4 Page 2 of 4 CS 161 - SP 11

t.cs161.edu is 6.6.6.6 and you have deployed a custom DNS server at that address
listening on port 53 for incoming requests.

The following graphic illustrates the necessary steps to establish a DNS tunnel. On
the left hand side you see the network stack, where the bottom three layers correspond
to the regular DNS communication in the hotspot network, depicted by the black
arrows in the Figure on the right. The top three layers represent the overlay network
that you create inside the DNS communication. In this case, assume that you would
like to establish a HT'TP connection to 128.32.244.172 and have already created a
HTTP request with appropriate TCP /IP header. For simplicity, let us refer to this

bundled data as encoded-request.
NS
cs161.edu

HTTP

TCP Hotspot network

1

Hotspot
DNS server

DNS

NS
t.cs161.edu

UDP

1. To get the data to the server, you ask the local hotspot resolver to lookup
encoded-request.t.csl161.edu.

2. Assuming the hotspot resolver already knows the nameserver for cs161.edu,
the resolver now needs to find out who is responsible for t.cs161.edu.

3. The authorative nameserver for cs161.edu tells the hotspot resolver that
t.csl161.edu is managed by 6.6.6.6.

4. Next, the hotspot resolver sends the query for encoded-request.t.cs161.edu
to 6.6.6.6. Your custom nameserver at this address knows how to decode the
incoming data, forward the HTTP request to 128.32.244.172 and encode the
HTTP reply plus the TCP/IP headers.

Discussion 4 Page 3 of 4 CS 161 — SP 11

5a. The encoded response is sent back as a TXT record, another form of DNS record
we have not yet encountered. This record allows you to associate arbitrary text
with a DNS name.

5b. After having received the encoded HTTP response as TXT record, the hotspot
resolver forwards it you. At this point, you can decode the data in the TXT
record and rebuild the overlay TCP/IP stack to extract the HTTP reply.

Note that steps (2) and (3) only occur once because the hotspot resolver will cache
the nameserver for t.cs161.edu.

If you would like to read more about DNS tunneling, you can find a good introduction
at www.dnstunnel.de. Moreover, the software iodine [1] is a concrete example of a
DNS tunnel implementation that ships both a client to be used on your laptop and
a custom DNS server daemon.

References

[1] Kyro. iodine. http://code.kryo.se/iodine.

'One often uses a separate subdomain for tunneling to be able to use the main domain also for other
purposes. Another reason is that some (web-based) domain management tools only allow you to set NS
entries for subdomains but not for the top-level domain itself.

Discussion 4 Page 4 of 4 CS 161 - SP 11

www.dnstunnel.de
http://code.kryo.se/iodine

