
Paxson
Spring 2011

CS 161
Computer Security Discussion 5

February 23, 2011

Question 1 Cross Site Request Forgery (CSRF) (7 min)
In a CSRF attack, a malicious user is able to take action on behalf of the victim. Consider
the following example. Mallory posts the following in a comment on a chat forum:

Of course, Patsy-Bank won’t let just anyone request a transaction on behalf of any given
account name. Users first need to authenticate with a password. However, once a user
has authenticated, Patsy-Bank associates their session ID with an authenticated session
state.

(a) Explain what could happen when Victim Vern visits the chat forum and views
Mallory’s comment.

(b) What are possible defenses against this attack?

Solution:

(a) The img tag causes the browser to make a request to http://patsy-bank.com/

withdraw?amt=1000&to=mallory with Patsy-Bank’s cookie. If Victim Vern was
previously logged in (and didn’t log out), Patsy-Bank might assume it is being
authorized to withdraw money by Vern.

(b) CSRF is caused by the inability of Patsy-Bank to differentiate between requests
from arbitrary untrusted pages and requests from Patsy-Bank form submissions.
The only correct way to fix this today is to use a nonce to bind the requests to
the form. For example, if a request to http://patsy-bank.com/withdraw is
normally made from a form at http://patsy-bank.com/askpermission, then
the form in the latter should include a random token that the server remembers.
Upon submitting the form, the random token is sent to http://patsy-bank.

com/withdraw and Patsy-Bank can then compare the token received with the
one remembered and allow the transaction to go through only if the comparison
succeeded.

The modern and more flexible way to protect against CSRF is via the Origin

header. The Origin header a request includes a list of sites that were involved
in the creation of the request. So in the example above, the Origin header
would include the chat forum in the Origin header and Patsy-Bank is going to
drop this request since pages on the chat forum are untrusted. This approach

Page 1 of 3

http://patsy-bank.com/withdraw?amt=1000&to=mallory
http://patsy-bank.com/withdraw?amt=1000&to=mallory
http://patsy-bank.com/withdraw
http://patsy-bank.com/askpermission
http://patsy-bank.com/withdraw
http://patsy-bank.com/withdraw

is more flexible because unlike the nonce solution above, you can allow multiple
sites to cause the transaction. For example, Patsy-Bank might trust http:

//www.trustedcreditcardcompany.com to directly withdraw money from a
user’s account. This is a use case that the nonce based solution doesn’t support
cleanly. Currently, many modern browsers support the Origin header but there
is still a sizeable chunk of users with browsers that don’t support it.

Question 2 SQL Injection (7 min)

(a) Explain the bug in this PHP code. How would you exploit it?

$query = "SELECT name FROM users WHERE uid = $_GET[’uid’]";

// Then execute the query.

(b) What is the best way to fix this bug?

Solution:

(a) The bug is that the uid GET parameter can be interpreted as a command
when properly formatted. For example, to delete the users table, pass in the
following as the uid:

0; DROP TABLE users;

(b) In this case, a simple fix would be to use a whitelist since uid only needs digits.
In essence, you are constraining the type of $ GET[’uid’] to an integer.

The underlying issue, though, is that data can be interpreted as a command.
The solution to this general issue is separate the parsing of the query from
the execution (when the data is supplied). Pepared statements (or parameter-
ized queries) offer exactly this. The SQL expression is only parsed once, with
placeholders for data. In a second step, the placeholders are replaced with the
user input, without changing the intent of the SQL expression. Consider the
following example:

$query = $db->prepare(’SELECT name FROM users WHERE uid = :user’);

$query->execute(array(’:user’ => $_GET[’uid’]));

The first line defines the SQL expression with a placeholder :user that is sub-
stituted with user input in the second line. Note that the substituted input is
not parsed as SQL anymore as this already happend in the first line. Therefore

Discussion 5 Page 2 of 3 CS 161 – SP 11

http://www.trustedcreditcardcompany.com
http://www.trustedcreditcardcompany.com

an attacker cannot provide bogus SQL commands because they will only be
interpreted as data that is bound to the variable :user.

Question 3 Session Fixation (6 min)
Some web application frameworks allow cookies to be set by the URL. For example,
visiting the URL

http://foobar.edu/page.html?sessionid=42.

will result in the server setting the sessionid cookie to the value ‘42’.

(a) What attack do you see on this scheme?

(b) Suppose that problem is fixed, and using our clever, new scheme, foobar.edu

establishes new sessions with session IDs based on a hash of the tuple (username,

time of connection). Is this secure? If not, what would be a better approach?

Solution:

(a) The main attack is known as session fixation. Say the attacker establishes a
session with foobar.edu and receives a session ID of 42. Then the attacker man-
ages to make the victim’s browser visit http://foobar.edu/browse.html?sessionid=42
(maybe through a img tag). The victim is now browsing foobar.edu with the
attacker’s account. Depending on the application, this could have serious impli-
cations. For example, the attacker could trick the victim to pay his bills instead
of the victim’s (as intended).

Another possibility is for the attacker to fix the sessionid and then send the user
a link to the log-in page. Depending on how the application is coded, it might
so happen that the application allows the user to log-in but reuses the previ-
ous (attacker-set) sessionid. For example, if the victim types in his username
and password at http://foobar.edu/login.html?sessioid=42, then the ses-
sionid 42 would be bound to his identity. In such a scenario, the attacker could
impersonate as the victim on the site. This is uncommon nowadays, as most
login pages reset the sessionid to a new random value instead of reusing an old
one.

(b) The proposed fix is not secure since it solves the wrong problem as discussed
above. The correct fix is to not set sessionID via URL parameters. Use cookies
instead.

Discussion 5 Page 3 of 3 CS 161 – SP 11

