
Wagner
Spring 2014

CS 161
Computer Security Project 1

Due: Monday, March 3, 2014, 11:59PM

Version 2, March 2, 2014

1 Overview

The FBI is after their man. They are convinced that Dr. Evil, a sinister hacker-wizard who
has taken up residence in a converted missile silo, is up to no good. Recently, one FBI agent
managed to infiltrate Dr. Evil’s silo, bribe one of his minions, and make off with a dozen
backup tapes of his data—but in the process the agent was caught, disappeared for two days,
and came back with his Pinterest and Tumblr pages modified to redirect to a video of some
Rick Astley song. That agent won’t talk about what happened during those two days and
flat-out refuses to ever set foot in Dr. Evil’s silo again, so it looks like the FBI is going to
have to make do with whatever data they’ve already got.

Unfortunately, a dozen backup tapes can hold an awful lot of data, as the FBI is discovering.
They’re frantically hiring developers to write forensic tools to analyze all the files on the
backup tapes, in hopes that this might reveal useful intelligence about Dr. Evil’s methods.
They’ve hired you to write a forensic analysis tool that analyzes image files and extracts
metadata in them. In particular, they want you to write a tool that will extract the textual
metadata from (a) PNG images, and (b) JPEG images with Exif data, and print out this
textual metadata. They plan to run your tool on all the image files from the backup tapes
and have a team of FBI analysts look through your tool’s output.

But be careful! This might all be a diabolical plan to set a trap for the FBI. For all we know,
Dr. Evil might have hidden a few files on his backup tapes containing data maliciously crafted
to attack your tool.

2 Your task

You must write a forensic metadata-extraction tool for PNG and JPEG-Exif images, while
taking care to make sure your tool is secure against malicious inputs. The FBI purchasing
officers have specified that your tool must be written in C and you should work in a team
of two on this project. You may use the standard C library and a decompression library we
specify, but you must not use any other software or libraries. (For instance, you may not
copy, use, invoke, or link to other code found on the Internet.)

Page 1 of 13

3 Requirements

Building. We provide a starter project with a Makefile, some skeleton code, and a few
test cases. They can be downloaded from the course web page. You should modify png.c

and jpg.c with your implementation. We recommend you start by implementing metadata
extraction for PNG images, as the JPEG-Exif file format is more involved.

We will use the Makefile in the starter project to compile your program. Any Makefile you
provide will be overwritten with our original copy, so don’t modify the Makefile. You can
test your code on hiveN .cs.berkeley.edu (where N is between 1 and 28).

Your program should accept a list of file names on the command line, and analyze each one,
one at a time, in the order provided. For each file it should write to standard output the
filename and then one line per element of meta data, as described below.

Make sure your program compiles. If your program does not compile, its empty executable
will not do well on the following tests.

Your program needs to satisfy two core requirements: functionality and security. These are
described below.

Functionality. When your program is invoked with a valid PNG file, or with a valid JPEG
file containing Exif data, it must produce correct output. By “valid”, we mean a file that
complies with all of the requirements in Section 6. Note that if the input file is not valid,
your program is not required to produce correct output, but it still must be memory-safe
(see security below).

For valid PNG files, your program must print one line per tEXt, zTXt, or tIME chunk. These
contain textual metadata, compressed textual data, and image creation time information,
respectively.

For valid JPEG files containing Exif data, your program must print one line per Exif tag,
for the following Exif tag types: DocumentName, ImageDescription, Make, Model, Soft-
ware, DateTime, Artist, HostComputer, Copyright, RelatedSoundFile, DateTimeOriginal,
DateTimeDigitized, MakerNote, UserComment, and ImageUniqueID.

The first line of output for each file must be of the form

File: foo.xxx

where foo.xxx is replaced with the filename.

Next, you should have one line of output per chunk/tag. This line should be of the form

Header: Value

where Header is the type of the data (for PNG, the key field; for JPEG, the tag type, such
as DocumentName), and Value is the value of the data.

Project 1 Page 2 of 13 CS 161 – Sp 14

To help you, we have provided a set of functionality test cases along with the starter code.
If you run make functionality-tests from the directory with your code, the Makefile we
provided will automatically run your program against each of the functionality tests. You
can find the test input in the tests/functionality directory, and the desired output in
the tests/functionality/out directory.

Security. Your program must be free of memory-safety bugs, and may not take longer
than 10 seconds to parse any file of size < 1 MB. (In effect, this means that your code should
never get into an infinite loop.) There must be no input that can trigger any memory-safety
bug or a timeout, even if the input file is invalid or maliciously constructed. We will attempt
to break your program by running it on malicious files, so be ready!

Memory-safety bugs include all of the following: array out-of-bounds writes, array out-of-
bounds reads, out-of-bounds reads or writes to any buffer, use of uninitialized data, accessing
memory after it has been deallocated or is no longer valid, freeing memory twice, and freeing
memory that was not allocated with malloc(). Your code must be completely free of all
such bugs.1 Integer overflow/underflow, signed/unsigned, and integer casting can also lead
to memory-safety bugs, so be careful with them as well.

Security test cases. You also must write at least five security test cases for the PNG task.
We will write several buggy variants of a PNG analyzer, each with a different memory-safety
bug. Your test cases should be designed to exploit memory-safety bugs that might plausibly
occur when writing a tool to extract metadata from PNG files. We will check whether your
test cases do indeed reveal the bug in our known-buggy programs. You can get full points
by detecting a memory-safety error in at least two of our known-buggy programs. Put your
security test cases in the tests/security_my directory. You may specify up to 20 test cases;
each file may be up to 1 MB long.

You do not need to write any test cases for the JPEG-Exif task.

Language. Your code must be written in C. Do not use assembly language, C++, or any
other programming language. Do not spawn any other process. Do not use any library other
than the standard C library and zlib (which is linked in, in the sample Makefile). Do not look
for code online. Do not use other code or libraries found online. You may consult references,
specifications, and other documents found online if you like, though we don’t expect this to
be necessary.

1These kinds of bugs can typically be exploited to allow code injection. However, if we find a memory-
safety bug in your code, we will not be testing whether there is a code injection exploit for that bug: if your
code has a memory-safety bug, we will consider it vulnerable, period. Therefore, you must avoid all such
bugs in your code, no matter what.

Project 1 Page 3 of 13 CS 161 – Sp 14

4 Grading Process

To submit. Submit your code and test cases by running submit proj1 from the directory
where your code is, while logged into your class account. Only one of you needs to submit;
you will be asked for the name of your partner when you submit.

To encourage equal work between teammates, after the project we will ask for separate
feedback on the contribution and effectiveness of each partner. Both of you must respond to
the survey at (TBD). This is mandatory.

Grading criteria. We will grade you on three criteria: functionality (for both PNG and
JPEG Exif files), security (for both PNG and JPEG Exif files), and test case coverage (for
your PNG test cases). Security will receive the highest weight, so make sure you have no
memory safety bugs! But, you must pass at least half the functional tests for a format to
get any security points for it.

We’ll test functionality by running your program on a few test cases (the functionality
tests) and checking that your program produces the right output. We have provided the
functionality test cases with the starter code, so you can test in advance whether you will
receive full points for functionality.

We will also have additional functionality tests that we keep hidden from you. The purpose
of these tests is to detect submissions which hard coded the results for other functionality
tests. If you fail these additional tests, we will look at your code. If we see that you have
hard coded in the expected results, you will lose points. Otherwise (even if you failed the
test) you will not lose any points.

Every few days we might run the autograder with some of our private test cases to give you
partial early feedback, so it pays to start early and submit as soon as you have working code.
The autograder will send you feedback by email to the email you listed when you registered
your class account. After the deadline, we will run the autograder with all tests, email you
a full report to your registered email, and record your grade in glookup.

We will penalize late submissions, as described on the course web page: if you submit less
than 24 hours late, you will lose 10%; if you submit less than 48 hours, you will lose 20%;
less than 72 hours, lose 40%; and no submissions will be accepted 72 hours or more after the
deadline.

You should work in a group of two. You may not share your code or solutions with anyone
other than your project partner. The maximum group size is two; you may not work in a
group of three or larger.

Project 1 Page 4 of 13 CS 161 – Sp 14

5 Helpful tools and tips

The Valgrind tool and the ZLib library will be useful in writing your forensic analysis pro-
gram. They are both installed on the hiveN.cs instructional machines. Our autograder will
compile and run your code on those machines, so they would be good places to test your
code.

You may also find a binary hex editor (i.e., a tool for reading and editing binary files) helpful
for writing test cases. bless or ghex are useful for this purpose, if you have a graphical login.
On a text-only connection, you can try hexedit or Emacs. On Emacs, M-x hexl-mode takes
you to the binary editor. Unfortunately, hexedit and Emacs don’t seem to let you insert
characters (only overwrite existing characters).

If you want to calculate a CRC-32 checksum by hand, you can do this quickly with an
interactive Python shell, as sketched below:

$ python

>>> import zlib

>>> ’%8.8X’ % (zlib.crc32(’tEXtTitle\0PngSuite’) & 0xffffffff)

’4F55CF4C’

So if we have a PNG tEXt chunk whose data is Title\0PngSuite, its CRC-32 checksum
will be 0x4F55CF4C.

Using Valgrind. Valgrind is helpful for checking for memory safety bugs and diagnosing
their full cause. Valgrind works by running your program, with extra checks added to each
memory access to try to detect out-of-bounds reads/writes. You can run your program on
an input foo.png using Valgrind, as follows:

valgrind ./analyze foo.pn

In other words, you just prepend valgrind to the command line.

If this test case triggers a buffer overrun, you might get an error message like this from
Valgrind:

==24677== Invalid write of size 1

==24677== at 0x400556: g (broken.c:11)

==24677== by 0x400563: h (broken.c:15)

==24677== by 0x40057E: main (broken.c:20)

==24677== Address 0x4c320a4 is 20 bytes after a block of size 80 alloc’d

==24677== at 0x4A06409: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

==24677== by 0x40053D: f (broken.c:7)

==24677== by 0x400579: main (broken.c:19)

Here is how to interpret that example. Valgrind reports that this is a Invalid write,
meaning that this was a write to an invalid memory address. Valgrind shows the call stack:
main() called h(), which called g(), which caused the invalid memory access on line 11 of

Project 1 Page 5 of 13 CS 161 – Sp 14

http://www.valgrind.org/
http://zlib.net/

broken.c. Valgrind also tells you that this was an attempt to write 20 bytes past the end
of a 80-byte buffer, and it gives you the call stack when that buffer was allocated (namely,
f() called malloc()).

For this exercise, we have provided a .valgrindrc file which customizes any invocation of
valgrind. When you run:

valgrind ./analyze foo.pn

This will automatically add the flags --suppressions=./libz.supp --leak-check=no --track-origins=yes.
This will give extra information about a certain kind of error message (use of uninitialized
data). Valgrind detects a memory problem in ZLib’s uncompress function that is expected
behavior. The suppressions flag tells Valgrind to ignore this problem.

So, Valgrind can be helpful for testing. You can run your program on many nasty test cases
(deliberately chosen to try to exercise potential security holes), using Valgrind, and Valgrind
will tell you if it has detected any memory safety flaw.

However, Valgrind is not perfect. It does not detect all memory-safety bugs. In particular,
it is especially weak at detecting overruns of stack buffers. We have set up the Makefile
to compile your program with stack canaries, to make it more likely that you detect these
problems during testing. If a stack buffer is overrun and this is detected by the stack canary
mechanism, you will see a message like:

*** stack smashing detected ***: ./analyze terminated

Nonetheless, even with this addition, it is important to understand the limitations of testing:
it can only find bugs that your test cases can trigger. This is especially true for security
bugs, which are often hard to trigger accidentally. Therefore, your first line of defense should
be to write your source code carefully and review it line-by-line for potential memory safety
errors.

On your own machine. If you have your own Linux machine and you have apt-get, you
can install Valgrind, zlib, bless, ghex, and hexedit as follows:

sudo apt-get install valgrind zlib1g-dev bless ghex hexedit

6 File Formats

You must support the PNG files and JPEG/Exif image file formats. Everything you need
to know about these file formats is documented below.

Of course, we may run your program on arbitrary malicious inputs. Your program must
never exhibit any memory safety bug on those inputs (but it doesn’t need to produce useful
output, if the input is not a valid PNG or JPEG/Exif file).

Project 1 Page 6 of 13 CS 161 – Sp 14

6.1 PNG file format

A PNG file starts with the 8 bytes 0x89 0x50 0x4e 0x47 0x0d 0x0a 0x1a 0x0a. The rest
of the file is a sequence of chunks. The format of a chunk is:

field name length description

length 4 bytes the length of the data field, in bytes (stored as big-endian integer)
chunktype 4 bytes 4 ASCII characters identifying what kind of data this is
data length bytes
checksum 4 bytes a CRC-32 checksum of the chunktype and data

The checksum is a CRC-32 checksum that is computed over the chunk type and the data
(but not the length). Helpful hint: the crc32 function in zlib can be used to compute and
check the validity of the CRC-32 checksum.

There are many possible chunktypes. You need to know about the following three: tEXt

(0x74 0x45 0x58 0x74), zTXt (0x7A 0x54 0x58 0x74), and tIME (0x74 0x49 0x4D 0x45).
These chunks may be found in any order in the file. There can be any number of tEXt and
zTXt chunks, but there will never be more than one tIME chunk in a valid PNG file. There
will also be many other chunks; you should skip over them.

The format of the data field in the tEXt chunk is:

field name length description

key variable a sequence of characters
nul 1 byte always the byte 0x00 (“\0”)
value variable a sequence of characters

Thus, the tEXt chunk is a key-value pair. Neither the key nor the value are nul-terminated.
There are no restrictions on the characters in the key and value, except that there should be
no nul bytes.

The format of the zTXt chunk is similar:

field name length description

key variable a sequence of characters
nul 1 byte always the byte 0x00 (“\0”)
compressiontype 1 byte always 0x00, in this assignment
compressedvalue variable a sequence of characters, compressed

You only need to consider the case where the compressiontype byte is zero, in this assignment.
As in the tEXt chunk, the key is a non-nul-terminated sequence of characters (bytes), with
no restriction on what characters may be used except that there should be no nul bytes.
The compressedvalue is compressed using zlib; you can use the uncompress() function from
zlib to retrieve the original value. Once decompressed, the value is a non-nul-terminated

Project 1 Page 7 of 13 CS 161 – Sp 14

sequence of characters (bytes), with no restriction on what characters may be used except
that there should be no nul bytes, just as in the tEXt chunk.

The format of the data field in the tIME chunk is:

field name length description

year 2 bytes the year, as a 16-bit big-endian integer
month 1 byte the month, as a 8-bit integer
day 1 byte . . .
hour 1 byte
minute 1 byte
second 1 byte

When you see this chunk, you should produce output like

Timestamp: 12/25/2004 2:39:2

except using the correct year, month, day, etc. (Don’t add a leading zero to the seconds,
minutes, or other fields. You can use a printf format string like %d/%d/%d %d:%d:%d.)

For a detailed example of how a small PNG file is decoded, see the figure on the next page.

6.2 JPEG file format

A JPEG file consists of a sequence of variable-length chunks.

A chunk starts with a 2-byte marker, which indicates the type of the chunk. The marker is
a 2-byte value in the range 0xff01 to 0xfffe; the first byte of the marker is always 0xff.

There are two formats for chunks: standard chunks and super chunks. Standard chunks have
the following form:

field name length description

marker 2 bytes indicates the type of chunk
length 2 bytes the length of the chunk, not including the marker
data (length− 2) bytes

Chunks with markers between 0xffd0 and 0xffda (inclusive) are super chunks. Super
chunks are like standard chunks, except they do not have a length field. Instead, in a super
chunk, the marker is followed by a variable-length stream of encoded data. The encoded
data has been encoded so that every 0xff byte will be followed by a 0x00 byte. The length
of the encoded data can be determined by looking for the next 0xff byte that’s followed by
something other than a 0x00 byte; when you find one, that must be a marker that starts a
new chunk, which in turn identifies the end of the encoded data stream. The SOS (Start of
Scan) chunk starts with marker 0xffda and is a super chunk. Any chunk that is not a super
chunk (i.e., any chunk whose is below 0xffd0 or above 0xffda) is a standard chunk.

Project 1 Page 8 of 13 CS 161 – Sp 14

0IRKXL�SJ��\H�!����F]XIW
���F]XIW�SJ�MVVIPIZERX�HEXE
'LIGOWYQ����F]XIW

*MVWX���F]XIW
SJ�42+��PI

'LYRO�X]TI�
K%1%

��HEXE�F]XIW

0IRKXL�SJ
��F]XIW

'LIGOWYQ

'LYRO�X]TI��-,(6����F]XIW

'LYRO�X]TI��X)<X
0IRKXL�SJ��\I�!����F]XIW
(EXE�����F]XIW�

/I]��8MXPI
��RYPP�F]XI���\��
:EPYI��4RK7YMXI

'LIGOWYQ

'LYRO�X]TI��X-1)
0IRKXL�SJ��\��!���F]XIW
(EXE����F]XIW�

=IEV���\�H��!�����
1SRXL���
(E]���
,SYV���\G�!���
1MRYXI���\���!���
7IGSRH���\���!���

'LIGOWYQ

0IRKXL�SJ��\�H�!����F]XIW
'LYRO�X]TI��^8<X

(EXE�����F]XIW�
/I]��(MWGPEMQIV
��RYPP�F]XI���\��
'SQTVIWWMSR�X]TI���\��
:EPYI�����F]XIW

'LIGOWYQ

'LYRO�X]TI��-)2(
0IRKXL����F]XIW
'LIGOWYQ

0IRKXL��2YQFIV�SJ�HEXE�F]XIW�MR�E�GLYRO 'LYRO�X]TI

Project 1 Page 9 of 13 CS 161 – Sp 14

The first chunk in a JPEG file must be a SOI (Start of Image) chunk, with marker 0xffd8.
The last chunk will be EOI (End of Image), with marker 0xffd9. Both of these are super
chunks: they do not have a length field. In addition, they do not have a data field either -
the next marker is found immediately after it.

One of the chunks in the file will be a APP1 chunk, with marker 0xffe1. This is a standard
chunk. The data portion of this chunk contains a TIFF file, which in turn contains the Exif
data. This is the only chunk whose contents you need to analyze. Your program should parse
the JPEG file into chunks, skip over other than the APP1 chunk, find the APP1 chunk, and
then analyze its contents as described below.

When you find the APP1 chunk, its data field will contain the byte sequence 0x45 0x78 0x69

0x66 0x00 0x00 followed by a TIFF file, whose format is described next.

6.3 TIFF file format

A TIFF file starts with a TIFF header. Somewhere after that is a 0th IFD as well as an Exif
IFD, plus lots of other stuff you can ignore. Intuitively, each IFD is itself a sort of “TIFF
mega-chunk.”

The TIFF header is 8 bytes long and has the following form:

field name length description

endianness 2 bytes 0x49 0x49, in this project
magic string 2 bytes always 0x2a 0x00, in this project
offset 4 bytes the start position of the 0th IFD, as an offset into the TIFF file

The first 2 bytes of the TIFF header are either 0x4949 (indicating a little-endian TIFF file)
or 0x4d4d (indicating a big-endian TIFF file). For this project, you only need to implement
support for little-endian TIFF files. In other words, the first two bytes of the TIFF header
will be 0x49 0x49. For a little-endian TIFF image, all 2-byte and 4-byte integers will be
stored in little-endian form. The next 2 bytes of the TIFF header are always 0x2a followed
by 0x00. The final 4 bytes of the TIFF header indicate where the 0th IFD begins. In
particular, they encode an integer that is the offset (in bytes, from the start of the TIFF file)
where the 0th IFD begins. For instance, if this field holds the value 0x08 0x00 0x00 0x00,
then this corresponds to the integer 0x00000008 after taking into account the little-endian
encoding, so the 0th IFD begins at the 8th byte of the TIFF file.

An IFD is a variable-length record, which contains a variable number of tag structures. A
tag structure is used to store some kind of parameter; think of it as a name-value pair. The
IFD starts with a 2-byte unsigned integer that records the number of tag structures in the
IFD (in little-endian form, as always). This is followed by the sequence of tag structures.

A tag structure is a container for a list of items. All of the items in the list have the same
type. The tag structure has the following format:

Project 1 Page 10 of 13 CS 161 – Sp 14

field name length description

tagid 2 bytes what kind of tag structure this is
datatype 2 bytes indicates the type of each item (e.g., int, float, etc.)
count 4 bytes the number of items in the tag structure
offset or value 4 bytes normally, start of item list, as an offset into the TIFF file

The tagid indicates what kind of tag structure this is and how to interpret the values in the
list of items.

The datatype of a tag structure can be one of of the following values:

value name description

0x0001 byte a byte
0x0002 ASCII string one character (i.e., byte) of a nul-terminated ASCII string
0x0003 unsigned short a two-byte unsigned integer
0x0004 unsigned long a four-byte unsigned integer
0x0005 unsigned rational two unsigned longs (numerator, denominator)
0x0007 undefined one character (i.e., a byte)
0x0008 signed short a two-byte signed integer
0x0009 signed long a four-byte signed integer
0x000a signed rational two signed longs (numerator, denominator)
0x000b float 4-byte floating point number
0x000c double 8-byte floating point number

As always, the 2-byte integers shown above are stored in little-endian form; for instance, a
‘short’ is indicated by the two-byte datatype 0x03 0x00. The length of an ASCII string is
given by the count of its containing tag structure. The ASCII string must be nul-terminated,
i.e., its last character is “\0” (0x00). Data of type ’undefined’ can have any kind of data,
but we will interpret it as an ASCII string. Since it can have any kind of data, it may or
may not be nul-terminated.

The offset or value field of a tag structure is a bit tricky. Normally, it is an offset into the
TIFF file, identifying the position where the list of items are found. For instance, if its value
is 0x00000040 (bytes 0x40 0x00 0x00 0x00), then the list of items starts at the 64th byte of
the TIFF file. (The datatype field of the tag structure reveals how long each item is, and the
count field indicates how many items are in the list, so once you know the starting position
of the list of items, you can read all the items.) However, as a special case, if the entire list
of items fits in 4 bytes or less, the list is stored directly in the offset or value field (with zero
bytes appended if needed to make it exactly 4 bytes long). For instance, if the datatype is
‘byte’ (0x0001) and the count is 3 and the three data bytes are 0x42 0x43 0x44, then the
offset or value field will contain the bytes 0x42 0x43 0x44 0x00.

Here are the kinds of tag structures that you’ll need to output, and their corresponding
tagid:

Project 1 Page 11 of 13 CS 161 – Sp 14

name tagid description

DocumentName 0x010D name of the document from which the image was obtained
ImageDescription 0x010E a description of the image
Make 0x010F make of the camera
Model 0x0110 model of the camera
Software 0x0131 software used to create the image
DateTime 0x0132 date and time of image creation
Artist 0x013B creator of the image
HostComputer 0x013C computer used to create the image
Copyright 0x8298 copyright notice
RelatedSoundFile 0xA004 name of a related audio file
DateTimeOriginal 0x9003 date and time of original image creation
DateTimeDigitized 0x9004 date and time when image was stored as digital data
MakerNote 0x927C manufacturer-defined information
UserComment 0x9286 comments on the image from the creator
ImageUniqueID 0xA420 a unique identifier assigned to the image

(As a reminder, the tagid is a 2-byte integer that’s stored in little-endian format in the file;
for instance, the DocumentName tagid is stored as the two bytes 0x0D 01.) Each of these
tag structures stores an ASCII string, except for MakerNote and UserComment, which are
of datatype ‘undefined’: i.e., a sequence of characters whose length is indicated by the count
field of the tag structure (just like an ASCII string, except it’s not nul-terminated). The
UserComment tag structure is special: its data part starts with 8 bytes that indicate the
character set (0x41 0x53 0x43 0x49 0x49 0x00 0x00 0x00 indicates ASCII, and you can
ignore all other values), followed by the actual user comment. Your program should output
one line for each of the tag structures listed in the table above, in the format Header: Value,
e.g., Artist: Dorothea Lange.

In addition, you need to know about the following tag structure, which should be present in
the 0th IFD:

name tagid description

Exif IFD ptr 0x8769 start position of the Exif IFD, as an offset into the TIFF file

This tag structure contains a single long (a 4-byte integer) identifying the file offset where
the Exif IFD starts. Since the offset fits into 4 bytes, it is stored directly in the offset or value
field of the tag structure.

Your program should parse the TIFF header, find the location of the 0th IFD, parse the 0th
IFD as a sequence of tag structures, print the value of all string-valued tag structures listed
in the table above, look for the Exif IFD ptr tag structure in the 0th IFD, use that to find
the location of the Exif IFD, parse the Exif IFD as a sequence of tag structures, and print
the value of all string-valued tag structured listed in the table above.

For an example of a small JPEG file and the decoding of its first 46 bytes, see the figure on
the next page. (Credit: Flickr.)

Project 1 Page 12 of 13 CS 161 – Sp 14

http://code.flickr.net/2012/06/01/parsing-exif-client-side-using-javascript-2/

Project 1 Page 13 of 13 CS 161 – Sp 14

	Overview
	Your task
	Requirements
	Grading Process
	Helpful tools and tips
	File Formats
	PNG file format
	JPEG file format
	TIFF file format

