
Wagner
Spring 2014

CS 161
Computer Security Project 2

Due: March 17, 11:59PM

Version 0: March 3, 2014

Background

It is a time of rebellion. The evil empire of Caltopia oppresses its people with relentless
surveillance, and the emperor has recently unveiled his latest grim weapon: a supremely
powerful botnet, called Calnet, that aims to pervasively observe the citizenry and squash
their cherished Internet freedoms.

Yet in the enlightened city of Birkland, a flicker of hope remains. The brilliant University of
Caltopia alumnus Neo, famed for not only his hacking skills but also the excellent YouTube
videos he produces illustrating his techniques, has infiltrated the empire’s byzantine networks
and hacked his way to the very heart of the Calnet source code repository. As the emperor’s
dark lieutenant, Prof. Evil of Junior University, attempts to hunt him down, Neo feverishly
scours the Calnet source code hunting for weaknesses. He’s in luck! He realizes that Prof. Evil
enlisted ill-trained CS students from Junior University in writing Calnet, and unbeknownst
to the empire, the code is assuredly not memory-safe.

Alas, just as Neo begins to code up some righteous exploits to pwn Calnet’s components, a
barista at the coffeeshop where Neo gets his free WiFi betrays him to Prof. Evil, who brutally
deletes Neo’s YouTube account and swoops in with a SWAT team to make an arrest. As
the thugs smash through the coffeeshop’s doors, Neo gets off one final tweet for help. Such
are his hacking skillz that he crams a veritable boatload of key information into his final
140 characters, exhorting the University of Birkland’s virtuous computer security students
to carry forth the flame of knowledge, seize control of Calnet, and let freedom ring once more
throughout Caltopia . . .

Getting Started

Neo has determined that the correct mojo for this task is you must work on it
in teams of 2 students. He expects your team to develop exploits for 5 vulnerabilities in
Calnet’s components. As they topple you will move closer and closer towards p0wning the
nefarious botnet. All you have to go by are your wits, your grit, and Neo’s legacy: guidelines
on how to proceed, and, most precious, a virtual machine (VM) image that contains code
samples from the main Calnet components.

Page 1 of 9

Software Setup

You can run and investigate the VM on your own computer. You will need the following
software:

• VirtualBox1, the virtualization server

• Your favorite text editor

• Your favorite shell2

• Your favorite SSH client3

• nmap security scanner4

• netcat5

On Linux and Mac, you can install nmap, nc and ssh from your package manager. On
Windows, you can install Cygwin2 and use its package manager.

Note: Only use these tools against your own infrastructure. You violate campus policy
when directing them against parties who do not provide their informed consent!

Start VirtualBox and go to File → Preferences → Network. Make sure there is a network
adapter listed under “Host-only Networks” named vboxnet0.6 If the adapter list is empty,
click the plus on the right side which will add a new interface. Confirm with OK.

Neo placed the VM image at http://www-inst.eecs.berkeley.edu/~cs161/sp14/projects/
proj2/pwnable.ova. Download it and import it via File → Import Appliance.

You will run the vulnerable programs and their exploits inside the VM. The image is a bare-
bones Ubuntu Linux server installation on a 32-bit Intel architecture. The first time you
boot the image, you have to enter your class accounts in the format cs161-x1x2,cs161-x3x4,
where x1, . . . , x4 are the letters of your class accounts. You need to list the accounts in alpha-
betical order. For example, if a student with class account cs161-we teams with a student
with class account cs161-vv, then you would enter the string “cs161-vv,cs161-we”.7

1VirtualBox is available at https://www.virtualbox.org, or from your package manager in Linux. Neo
has succesfully used versions 4.1.12 and 4.2.6

2On Windows, Neo recommends Cygwin/bash: http://cygwin.com/install.html
3On Windows, Neo recommends PuTTY: http://www.chiark.greenend.org.uk/~sgtatham/putty/
4nmap is available at http://nmap.org/download.html
5On Windows, Neo recommends installing Cygwin/bash and then installing the netcat package when

running setup.exe (nc is part of the NET package). N.B. netcat may have a different name depending on
your operating system (e.g. nc, ncat, or netcat).

6On Windows, the interface may have a different, much longer name.
7 If you want to do some initial exploration by yourself before you’ve finalized your team, you can start

off using just your class account for this configuration step. Once you have your team in place, you’ll need
to start again with a clean VM image configured as mentioned here. Any exploits you’ve developed for your
private VM image will require porting (re-determination of the addresses to use in them). This should go
quickly once you’ve learned how to figure out the addresses in the first place.

Project 2 Page 2 of 9 CS 161 – Sp 14

http://www-inst.eecs.berkeley.edu/~cs161/sp14/projects/proj2/pwnable.ova
http://www-inst.eecs.berkeley.edu/~cs161/sp14/projects/proj2/pwnable.ova
https://www.virtualbox.org
http://cygwin.com/install.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://nmap.org/download.html

Some Important Advice Concerning Execution Environments

Note: This advice does not concern Question 1.

Exploit development can lead to serious headaches if you don’t adequately account for fac-
tors that introduce non-determinism into the debugging process. In particular, the stack
addresses in the debugger may not match the addresses during normal execution. This ar-
tifact occurs because the operating system loader places both environment variables and
program arguments before the beginning of the stack:

Stack

program arguments

environment vars

Kernel

0xc0000000

0xbffff???

variable
size

Already installed in the VM you’ll find a small helper utility, invoke, that makes sure
environment and arguments remain at the same location, regardless of whether using the
debugger or not. For example, instead of invoking the program foo directly via ./foo, you
should instead use invoke foo:

% ./foo arg1 arg2 # invocation dependent on environment state :-(

% invoke foo arg1 arg2 # deterministic invocation

% invoke -d foo arg1 arg2 # deterministic invocation in gdb

You may find it useful to pass an extra environment to the program. The -e switch serves
that purpose:

% invoke -e X=Y foo arg1 # sets environment variable X=Y in foo

Note: You must always use invoke to launch (or debug via -d) the provided executables
because invoke additionally parameterizes the execution environment based on the ID you
entered during the first boot. More broadly, since our grading tool uses the exact same
VM that you downloaded, do not perform any system modifications, only add/upload new
content. (For example, do not attempt to recompile the given executables.) This way you
ensure that your solutions will work with our grading tool and you do not run the risk of
losing unnecessary points.

In addition, we are providing a tool that allows you to pipe input while using GDB. (This
can be useful for your writeups!) Download it at http://www-inst.eecs.berkeley.edu/

~cs161/sp14/projects/proj2/gdbpipe-tools.tgz. This is useful when you’re trying to
do something like the following, which will not work in GDB:

% (./egg;cat) | invoke -d dejavu

Project 2 Page 3 of 9 CS 161 – Sp 14

http://www-inst.eecs.berkeley.edu/~cs161/sp14/projects/proj2/gdbpipe-tools.tgz
http://www-inst.eecs.berkeley.edu/~cs161/sp14/projects/proj2/gdbpipe-tools.tgz

Instead, to do the equivalent of the comman above, first type (assuming you’ve unpacked
the archive in the current directory):

% ./invoke -t dejavu

Then, open a new SSH session, and run:

% (./egg;cat) | ./gdbpipe

Now, when you type ’r’ in gdb in the first window, you can interact with the program like
normal in the second window. Press Ctrl+C to exit and start a new pipe each time you
re-run the program.

The Task

Unfortunately Neo did not have enough time to figure out the necessary login credentials. It
is up to you to break into the VM and continue his mission, with the ultimate goal to gain
root privileges on the machine to have full control over Calnet. Neo’s intelligence sources
revealed that, once broken in the system, the required login credentials necessary for further
access are located inside the system itself.

You know from having watched his YouTube channel that Neo advocates a three-step ap-
proach for breaking into a system:

Step 1: Reconnaissance. Investigate what software/which services is/are running (hint: nmap).
Determine if there is anything you can access (hint: netcat). What can you discover
about the software (e.g., in terms of version; do you have the source code)? Using this
information you can seek out potential vulnerabilities.

Step 2: Development. After you have found a vulnerability, you can create an exploit using
the found bugs(generally, as an attacker, this means crafting a malicious input to the
buggy program).

Step 3: Profit.

Use Neo’s three-step plan to solve the following problems.

Question 1 Gaining VM Access (20 points)
Neo knew that it could prove daunting to find yourself confronted with an unknown
system without login credentials. Upon skimming his tweets, you find out that one
standard procedure to break into systems begins with a port scan via nmap, which tells
you what services run on the machine. Moreover, you learn about netcat. Familiarize
yourself with these tools by reading their man pages and try to use them to get a foothold
in the system!

Note: You need to gain access to the VM via the network, as opposed to mounting the
filesystem locally and browsing the contents.

Project 2 Page 4 of 9 CS 161 – Sp 14

Submission and Grading. For this problem you will submit a shell script named
exploit which takes an IP address as first argument. Our grading tool executes your
script as ./exploit address where address represents the IP address of our grad-
ing VM. Our tool tests whether the end of the execution spawns a shell with effective
privileges of the user vsftpd8 (10 points).

Moreover, you will submit a file called NETCAT that includes the first line from the output
of nc -h where nc stands for the netcat flavor you use. You must also submit a file,
q1.txt, that includes a brief description of the vulnerability, how it could be exploited,
and a walkthrough of your solution. You should also include output from any tools you
used in your discovery of the exploit. This document should be no more than one page.
We will use it to verify that your understanding of the problem matches your exploit
code. Moreover, we will use it to award you partial credit in the event that your exploit
does not work with our automated grading system (10 points).

Question 2 Behind the Scenes (40 points)
Neo’s tweet assures you that given its hasty development by poorly educated pro-
grammers, Calnet’s components contain a number of memory-safety vulnerabilities. In
the VM that Neo provided, you will find the first code piece located in the directory
/home/vsftpd.9

You are to continue his work and write an exploit that spawns a shell, for which you can
use the following shellcode:

shellcode =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07" +

"\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d" +

"\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80" +

"\xe8\xdc\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68"

Note: Recall that x86 has little-endian byte order, e.g., the first four bytes of the above
shellcode will appear as 0x895e1feb in the debugger.

Neo already provided an exploit scaffold that takes your malicious buffer and feeds it to
the vulnerable program via a script called exploit:

#!/bin/sh

(./egg ; cat) | invoke dejavu

(As one of Neo’s tweets explains in a concise but strikingly lucid fashion, the expression
before the shell pipe is necessary so that if the attack input generated by egg succeeds,
then you will be able to interact with the shell that the exploit spawns by typing via
stdin.)

8When testing your attack, a shell prompt may not appear so you should try running a command such
as ls or whoami to determine you have succeeded, or your script is just hanging.

9The vulnerable binary has the setuid bit set and is owned by the user of the next stage, meaning it will
run with the effective privileges of user smith.

Project 2 Page 5 of 9 CS 161 – Sp 14

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Setuid

To get started, read “Smashing The Stack For Fun And Profit” by AlephOne [1]. Neo
recommended that you try to absorb the high-level concepts of exploiting stack overflows
rather than every single line of assembly. He also warned you that some of the example
codes are outdated and may not work as-is.

Submission and Grading. For this problem you will submit the missing script egg,
which can be written in your favorite scripting language (e.g., Python, Ruby, Perl, Bash).
Your code should print the buffer used by the exploit script to spawn a shell. Make
sure it works by invoking ./exploit. Our grading tool will log into a clean VM image
as user vsftpd and put your submission into the directory /home/vsftpd. A script will
then invoke the script exploit exactly as given above and check for the existence of a
shell prompt with effective privileges of user smith (25 points).

You must also submit a file, q2.txt, that includes a brief description of the vulnerability,
how it could be exploited, how you determined which address to jump to, and a sketch
of your solution. This includes gdb output that very clearly demonstrates the effects of
your exploit (before/after). As before, keep it to no more than one page (15 points).

Question 3 Compromising Further (40 points)
Calnet uses a sequence of stages to protect intruders from gaining root access. The
inept Junior University programmers actually attempted a half-hearted fix to address
the overt buffer overflow vulnerability from the previous stage. In this problem you must
bypass these mediocre security measures and, again, inject code that spawns a shell.

In the home directory of this stage, /home/smith, you will find a small helper script
generate-file-contents. This script takes arbitrary input via stdin and prints the
first 127 bytes to stdout in the format that the program agent-smith expects (which is
an initial byte specifying the length of the input, followed by the input itself):

% ./generate-file-contents < anderson.txt

Neo realized that this helper script always generates safe files to be used with the buggy
agent-smith program—but nothing prevents you from instead feeding agent-smith an
arbitrary file of your choice. In particular, Neo started a script exploit representing an
initial exploit attempt:

#!/bin/sh

./egg > pwnzerized

invoke agent-smith pwnzerized

Submission and Grading. As in the previous question, you will submit a script egg,
written in your favorite scripting language, that integrates with the above displayed
script exploit. Your script should inject shellcode to spawn a shell. Make sure it works
by invoking ./exploit. Our grading tool will log into a clean VM image as user smith
and put your submission into the directory /home/smith. A script will then invoke

Project 2 Page 6 of 9 CS 161 – Sp 14

exploit and check for the existence of a shell prompt with effective privileges of user
brown (25 points).

You must also submit a file, q3.txt, that includes the same type of information as for
the previous Question (15 points).

Question 4 Deep Infiltration (50 points)
Calnet is a pernicious and invasive piece of malcode. But Prof. Evil undertook all of
his own studies at Junior University, and as such he never really learned how to count
without occasionally screwing it up. Find the subtle vulnerability in this code, and inject
code that spawns a shell.

Neo, again on top of it, started a scaffold called exploit that you can use:

#!/bin/sh

invoke -e egg=$(./egg) agent-brown $(./arg)

(Note that a shell expression like “$(foo)” means “run the command foo and substitute
its stdout output here.” So “egg=$(./egg)$” means “run the command ./egg and
assign the output it generates to the variable $egg.”)

To solve this problem, you are pretty sure that a cryptic reference in Neo’s tweets
indicates you’d benefit from reading Section 10 of “ASLR Smack & Laugh Reference”
by Tilo Müller [2]. (Although the title suggests that you have to deal with ASLR, you
can ignore any ASLR-related content in the paper for this question.)

Submission and Grading. For this question question, you will submit a script arg

and a script egg written in your favorite scripting language. Your code should integrate
with the script exploit as shown above. Make sure your scripts work by invoking
./exploit. Our grading tool will log into a clean VM image as user brown and put your
submission into the directory /home/brown. A script will then invoke exploit and check
for the existence of a shell prompt with effective privileges of user jz (30 points).

As for the previous question, you must also submit a file, q4.txt, that includes a brief
description of the vulnerability, how it could be exploited, how you determined which
address to jump to, and a sketch of your solution. This includes gdb output that very
clearly demonstrates the effects of your exploit (before/after) (20 points).

Question 5 The Last Bastion (50 points)
To protect the Calnet source from advanced hackers, Prof. Evil’s minions persuaded him
that he must enable address layout randomization (ASLR) as a final layer of defense for
the VM. They assured him that it was inconceivable that anyone even of super-
human intelligence would possess the uber-h4x0r skillz required to overcome this.

Yo, Birkland! Your mission, should you choose to accept it, is to bypass the ASLR
protection and spawn a shell with root privileges. Full control of the box . . . and thus
Calnet itself awaits you! Neo didn’t dare hope you might hack your way this far and this

Project 2 Page 7 of 9 CS 161 – Sp 14

deeply . . . but he could never abandon his dream of freedom, and to that end provided
an exceedingly cryptic clue in his final tweet that after a caffeine-fueled all-nighter you
eventually realize suggests you should consider reading Section 8 of “ASLR Smack &
Laugh Reference” by Tilo Müller [2].

One detail Neo could figure out for you is that the service to exploit listens locally on
TCP port 42000. It turns out that the operating system watches the service and restarts
it shortly when it crashes. You have to send the malicious shellcode to that service to
successfully complete this task. Looking through Neo’s past tweets, you find guidance
to develop this in the form of a TCP “bind shell” listening on 127.0.0.1:6666.

Linux (x86) TCP shell binding to port 6666.

bind_shell =

"\x31\xdb\xf7\xe3\x53\x43\x53\x6a\x02\x89\xe1\xb0\x66\xcd" +

"\x80\x5b\x5e\x52\x68\x02\x00\x1a\x0a\x6a\x10\x51\x50\x89" +

"\xe1\x6a\x66\x58\xcd\x80\x89\x41\x04\xb3\x04\xb0\x66\xcd" +

"\x80\x43\xb0\x66\xcd\x80\x93\x59\x6a\x3f\x58\xcd\x80\x49" +

"\x79\xf8\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3" +

"\x50\x53\x89\xe1\xb0\x0b\xcd\x80"

This should finally suffice to pull off the Final Stage! Somehow you must code up the
program egg so that Neo’s exploit script can launch the final, fatal strike:

#!/bin/sh

echo "sending exploit"

./egg | nc 127.0.0.1 42000 &

sleep 1

nc ...

Alas, the battery in Neo’s ultra-thin BlueTooth keyboard died just as he was finishing
typing here. To successfully employ the script, you’ll need to replace “...” with the
required arguments to access the root shell.

The freedom of cybercitizens throughout Caltopia rests in your hands . . .

Submission and Grading. For this question question, you will submit a complete
shell script exploit that carries out the attack and spawns a shell with root privileges.
You will also submit a script egg, written in your favorite scripting language, that prints
the exploit buffer to standard output and pipes it to netcat. Make sure your scripts
work by invoking ./exploit. Our grading tool will log into a clean VM image as user
jones and put your submission into the directory /home/jones. A script will then
invoke exploit and check for the existence of a shell prompt with effective privileges of
user root (30 points).

You must also submit a file, q5.txt, in the same fashion as for the previous question
(20 points).

Project 2 Page 8 of 9 CS 161 – Sp 14

Question 6 Feedback (optional) (0 points)
If you wish, submit a text file, feedback.txt, with any feedback you may have about
this project. What was the hardest part of this project in terms of understanding? In
terms of effort? (We also, as always, welcome feedback about other aspects of the class.)
Your comments will not in any way affect your grade.

Submission Summary

In summary, you must submit the following directory tree:

q1/exploit

q1/q1.txt

q1/NETCAT

q2/egg

q2/q2.txt

q3/egg

q3/q3.txt

q4/arg

q4/egg

q4/q4.txt

q5/egg

q5/exploit

q5/q5.txt

feedback.txt (optional)

References

[1] Aleph One. Smashing The Stack For Fun And Profit. Phrack, 7(49), November 1996.
http://www-inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf.

[2] Tilo Müller. ASLR Smack & Laugh Reference. http://www.icir.org/matthias/

cs161-sp13/aslr-bypass.pdf, February 2008.

Project 2 Page 9 of 9 CS 161 – Sp 14

http://www-inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

