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Access Control 

•  Some resources (files, web pages, …) are 
sensitive. 

•  How do we limit who can access them? 

•  This is called the access control problem 



Access Control Fundamentals 

•  Subject = a user, process, … 
(someone who is accessing resources) 

•  Object = a file, device, web page, … 
(a resource that can be accessed) 

•  Policy = the restrictions we’ll enforce 

•  access(S, O) = true 
if subject S is allowed to access object O 



Example 

•  access(Alice, Alice’s wall) = true 
access(Alice, Bob’s wall) = true 
access(Alice, Charlie’s wall) = false 

•  access(daw, /home/cs161/gradebook) = true 
access(Alice, /home/cs161/gradebook) = false 



Access Control Matrix 

•  access(S, O) = true 
if subject S is allowed to access object O 

Alice’s wall Bob’s wall Charlie’s wall … 
Alice true true false 
Bob false true false 
 … 



Permissions 

•  We can have finer-grained permissions, 
e.g., read, write, execute. 

•  access(daw,  /cs161/grades/alice) = {read, write} 
access(alice, /cs161/grades/alice) = {read} 
access(bob,  /cs161/grades/alice) = {} 

/cs161/grades/alice 
daw read, write 
alice read 
bob - 



Web security 

•  Let’s talk about how this applies to web 
security… 



Structure of a web application 
(code)!

/login.php!

(code)!

/friends.php!

(code)!

/search.php!

(code)!

/viewwall.php!
.!.!.!

database!controller!

How should we 
implement access 
control policy? 



Option 1: Integrated Access Control 
(code)!

/login.php!

(code)!

/friends.php!

(code)!

/search.php!

(code)!

/viewwall.php!
.!.!.!

database!controller!

record !
username"

access 
check"

access 
check"

access 
check"

Record username. 
Check policy at each 
place in code that 
accesses data. 



Option 2: Centralized Enforcement 
(code)!
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(code)!

/friends.php!

(code)!
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(code)!
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record !
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Database checks 
policy for each 
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Option 1: Integrated Access 
Control 

(code)!

/login.php!

(code)!

/friends.php!

(code)!

/search.php!

(code)!

/viewwall.php!

.!.!.!

database!controller!

record !
username"

access 
check"

access 
check"

access 
check"

Record username. 
Check policy at each 
place in code that 
accesses data. 

(code)!

/login.php!

(code)!

/friends.php!

(code)!

/search.php!

(code)!

/viewwall.php!

.!.!.!

database!controller!

record !
usernam

e"

access 
check"

Option 2: Centralized 
Enforcement 

Which option 
would you pick? 
Discuss. 

Record username. 
Database checks 
policy for each 
data access. 



Analysis 

•  Centralized enforcement might be less 
prone to error 
– All accesses are vectored through a central 

chokepoint, which checks access 
–  If you have to add checks to each piece of 

code that accesses data, it’s easy to forget a 
check (and app will work fine in normal usage, 
until someone tries to access something they 
shouldn’t) 

•  Integrated checks are occasionally more 
flexible 



Complete mediation 

•  The principle: complete mediation 
•  Ensure that all access to data is mediated 

by something that checks access control 
policy. 
–  In other words: the access checks can’t be 

bypassed 



Reference monitor 

•  A reference monitor is responsible for 
mediating all access to data 

•  Subject cannot access data directly; 
operations must go through the reference 
monitor, which checks whether they’re OK 

subject! reference"
monitor! object!



Criteria for a reference monitor 

Ideally, a reference monitor should be: 
•  Unbypassable: all accesses go through 

the reference monitor 
•  Tamper-resistant: attacker cannot subvert 

or take control of the reference monitor 
(e.g., no code injection) 

•  Verifiable: reference monitor should be 
simple enough that it’s unlikely to have 
bugs 



Example: OS memory protection 

•  All memory accesses are mediated by 
memory controller, which enforces limits 
on what memory each process can access 

CPU! memory "
controller! RAM!

Unbypassable? ✔ 



Example: OS memory protection 

•  All memory accesses are mediated by 
memory controller, which enforces limits 
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CPU! memory "
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Tamper-resistant? ✔ 



Example: OS memory protection 

•  All memory accesses are mediated by 
memory controller, which enforces limits 
on what memory each process can access 

CPU! memory "
controller! RAM!

Verifiable? ✔ 



TCB 

•  More broadly, the trusted computing 
base (TCB) is the subset of the system 
that has to be correct, for some security 
goal to be achieved 
– Example: the TCB for enforcing file access 

permissions includes the OS kernel and 
filesystem drivers 

•  Ideally, TCBs should be unbypassable, 
tamper-resistant, and verifiable 



Privilege separation 

•  How can we use these ideas to improve 
the security of software, so security 
bugs are less likely to be catastrophic? 



Privilege separation 

•  How can we use these ideas to improve 
the security of software, so security 
bugs are less likely to be catastrophic? 

•  Answer: privilege separation. 
Architect the software so it has a 
separate, small TCB. 
– Then any bugs outside the TCB will not be 

catastrophic 



Web browser 

file to an entire instance of the rendering engine, even
when that privilege is only needed by a single security
origin.

The architecture does not prevent an attacker who compro-
mises the rendering engine from attacking other web sites
(for example, by reading their cookies). Instead, the archi-
tecture aims to prevent an attacker from reading or writing
the user’s file system, helping protect the user from a drive-
by malware installation.

To evaluate the security of Chromium’s architecture, we
examine the disclosed browser vulnerabilities in Internet Ex-
plorer, Firefox, and Safari from the preceding year. For
each vulnerability, we determine which module would have
been a↵ected by the vulnerability, had the vulnerability been
present in Chromium. We find that 67.4% (87 of 129) of the
vulnerabilities would have occurred in the rendering engine,
suggesting that the rendering engine accounts for a signifi-
cant fraction of the browser’s complexity.

Not all rendering engine vulnerabilities would have been
mitigated by Chromium’s architecture. Chromium’s archi-
tecture is designed to mitigate the most severe vulnerabili-
ties, namely those vulnerabilities that let an attacker execute
arbitrary code. If an attacker exploits such a vulnerability in
the rendering engine, Chromium’s architecture aims to re-
strict the attacker to using the browser kernel interface. We
find that 38 of the 87 rendering engine vulnerabilities al-
lowed an attacker to execute arbitrary code and would have
been mitigated by Chromium’s architecture. These account
for 70.4% (38 of 54) of all disclosed vulnerabilities that allow
arbitrary code execution.

To evaluate the security benefits of sandboxing additional
browser components, we examined the arbitrary code execu-
tion vulnerabilities that would have occurred in the browser
kernel. We find that 72.7% (8 of 11) of the vulnerabilities
result from insu�cient validation of system calls and would
not have been mitigated by additional sandboxing. For ex-
ample, one such vulnerability involved the browser improp-
erly escaping a parameter to ShellExecute when handling
external protocols. Although counting vulnerabilities is an
imperfect security metric [24], these observations lead us to
believe that Chromium’s architecture suitably divides the
various browser components between the browser kernel and
the rendering engine.

By separating the browser into two protection domains,
one representing the user and another representing the web,
Chromium’s security architecture mitigates approximately
70% of critical browser vulnerabilities that let an attacker
execute arbitrary code. The remaining vulnerabilities are
di�cult to mitigate with additional sandboxing, leading us
to conclude that the architecture extracts most of the secu-
rity benefits of sandboxing while maintaining performance
and compatibility with existing web content.

We took a three-pronged approach to evaluating the com-
patibility of Chromium’s architecture. First, our implemen-
tation of the architecture passes 99% of 10,115 compatibility
tests from the WebKit project. The tests our implementa-
tion does not pass are due to implementation details and
are not due to architectural limiations. Second, we man-
ually visited each of the 500 most popular web sites and
fixed any incompatibilities we found. Third, we deploy our
implementation to millions of users world-wide.

Sandbox

Rendering

Engine
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Browser  Kernel

Rendered  BitmapHTML,  JS,  ...

Figure 1: The browser kernel treats the rendering
engine as a black box that parses web content and
emits bitmaps of the rendered document.

Organization. Section 2 defines a threat model for browser
exploits. Section 3 details Chromium’s architecture. Sec-
tion 4 describes the sandbox used to confine the rendering
engine. Section 5 explains the browser kernel API used by
the sandboxed rendering engine. Section 6 evaluates the se-
curity properties of the architecture. Section 7 compares
Chromium’s architecture with other browser architectures.
Section 8 concludes.

2. THREAT MODEL
In order to characterize the security properties of Chro-

mium’s architecture, we define a threat model by enumerat-
ing the attacker’s abilities and goals. The security architec-
ture seeks to prevent an attacker with these abilities from
reaching these goals. We can use this threat model to eval-
uate how e↵ectively Chromium’s architecture protects users
from attack.

Attacker Abilities. We consider an attacker who knows an
unpatched security vulnerability in the user’s browser and
is able to convince the user’s browser to render malicious
content. Typically, these abilities are su�cient to compro-
mise the user’s machine [20]. More specifically, we assume
the attacker has the following abilities:

1. The attacker owns a domain name, say attacker.com,
that has not yet been added to the browser’s malware
blacklist [19]. The attacker has a valid HTTPS cer-
tificate for the domain, and controls at least one host
on the network. These abilities can be purchased for
about $5.

2. The attacker is able to convince the user to visit his
or her web site. There are a number of techniques
for convincing the user to visit attacker.com, such as
sending out spam e-mail, hosting popular content, or
driving tra�c via advertising. It is di�cult to price
this ability, but, in a previous study, we were able to
attract a quarter of a million users for about $50 [1].
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the attacker has the following abilities:

1. The attacker owns a domain name, say attacker.com,
that has not yet been added to the browser’s malware
blacklist [19]. The attacker has a valid HTTPS cer-
tificate for the domain, and controls at least one host
on the network. These abilities can be purchased for
about $5.

2. The attacker is able to convince the user to visit his
or her web site. There are a number of techniques
for convincing the user to visit attacker.com, such as
sending out spam e-mail, hosting popular content, or
driving tra�c via advertising. It is di�cult to price
this ability, but, in a previous study, we were able to
attract a quarter of a million users for about $50 [1].
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700K lines of code!

1000K lines of code!

70% of vulnerabilities are 
in the rendering engine.!

Example: PNG, WMF, GDI+!
rendering vulnerabilities in 
Windows OS!



Summary 

•  Access control is a key part of security. 

•  Privilege separation makes systems 
more robust: it helps reduce the impact 
of security bugs in your code. 

•  Architect your system to make the TCB 
unbypassable, tamper-resistant, and 
verifiable (small). 



Coming Up … 
•  Friday guest lecture: 

Malware 
•  Homework 0 due Friday 
•  C review session, Saturday, February 1st, 

2-4pm, 306 Soda 


