Access Control and
OS Security

CS 161: Computer Security
Prof. Anthony D. Joseph

Access Control

* Some resources (files, web pages, ...) are
sensitive.

e How do we limit who can access them?

* This is called the access conftrol problem

Access Control Fundamentals

* Subject = a user, process, ...
(someone who is accessing resources)

* Object = a file, device, web page, ...
(a resource that can be accessed)

* Policy = the restrictions we’'ll enforce

* access(S, O) = true
If subject S is allowed to access object O

Example

« access(Alice, Alice’s wall) = true
access(Alice, Bob’s wall) = true
access(Alice, Charlie’s wall) = false

« access(daw, /home/cs161/gradebook) = true
access(Alice, /home/cs161/gradebook) = false

Access Control Matrix

* access(S, O) = true
If subject S is allowed to access object O

Alice true true false
Bob false true false

Permissions

* WWe can have finer-grained permissions,
e.d., read, write, execute.

« access(daw, /cs161/grades/alice) = {read, write}
access(alice, /cs161/grades/alice) = {read}
access(bob, /cs161/grades/alice) = {}

daw read, write
alice read
bob

Web security

» Let’s talk about how this applies to web
security...

Structure of a web application

(code)

/friends.php / database

(code)

\

v

A

controller

7

/search.php

(code)

/viewwall.php

Option 1: Integrated Access Control

record

| username
code)

/login|ii®
/ g/i access
check

/|

(code) Ej

controller Jfriends php database
aCCess
(code

check

\ﬁ/

< N
~ 7

Record username. /search.php

Check policy at each 1 ichc:sli
place in code that (coge

accesses data.

/viewwall.php

Option 2: Centrallzed Enforcement

record

| username
code)

S

check
(code)

controller \ /friends php / database

(code)

Record username. /search.php

Database checks
policy for each
data access.

(code)

/viewwall.php

Option 1: Integrated Access
Control

record
username
code)

<—> / <

Nogigr=
/ access
check

(code)

controller

/friends.php

Y

/search.php

access
(CO e check

access
heck
(code)| chec

/viewwall.php
Record username.

Check policy at each
place in code that
accesses data.

database

Option 2: Centralized
Enforcement

controller

R

<—>

record
usernam
e

code)

/login.php
acCcess

check
>

(code)

database
/friends.php

(code)

/search.php

ode)|© Record username.
| Database checks
e iBolicy for each
data access.

Analysis

* Centralized enforcement might be less
prone to error

— All accesses are vectored through a central
chokepoint, which checks access

— If you have to add checks to each piece of
code that accesses data, it's easy to forget a
check (and app will work fine in normal usage,
until someone tries to access something they

shouldn’t)

* Integrated checks are occasionally more
flexible

Complete mediation

* The principle: complete mediation

 Ensure that all access to data is mediated
by something that checks access control
policy.
— In other words: the access checks can’t be
bypassed

Reference monitor

* A reference monitor is responsible for

mediating all access to data

subject

reference
monitor

N

,‘

object

* Subject cannot access data directly;

operations must go through the reference
monitor, which checks whether they're OK

Criteria for a reference monitor

|deally, a reference monitor should be:

* Unbypassable: all accesses go through
the reference monitor

 Tamper-resistant: attacker cannot subvert
or take control of the reference monitor
(e.g., no code injection)

* Verifiable: reference monitor should be
simple enough that it's unlikely to have
bugs

Example: OS memory protection

* All memory accesses are mediated by
memory controller, which enforces limits
on what memory each process can access

CPU / / ey / RAM

controller
[TTTTTTTTTTTTTTT] [TTTTT] [TTTTTTTTTTTTTTT]

Example: OS memory protection

* All memory accesses are mediated by
memory controller, which enforces limits
on what memory each process can access

CPU / / ey / RAM

controller
[TTTTTTTTTTTTTTT] [TTTTT] [TTTTTTTTTTTTTTT]

Example: OS memory protection

* All memory accesses are mediated by
memory controller, which enforces limits
on what memory each process can access

CPU / / ey / RAM

controller
[TTTTTTTTTTTTTTT] [TTTTT] [TTTTTTTTTTTTTTT]

TCB

* More broadly, the trusted computing
base (TCB) is the subset of the system
that has to be correct, for some security
goal to be achieved

— Example: the TCB for enforcing file access
permissions includes the OS kernel and
filesystem drivers

* |deally, TCBs should be unbypassable,
tamper-resistant, and verifiable

Privilege separation

 How can we use these ideas to improve
the security of software, so security
bugs are less likely to be catastrophic?

Privilege separation

 How can we use these ideas to improve
the security of software, so security
bugs are less likely to be catastrophic?

* Answer: privilege separation.
Architect the software so it has a
separate, small TCB.

— Then any bugs outside the TCB will not be
catastrophic

4 O
Web Site

HTML, JS, ...

Web browsgr

Trusted

Computing
Base

~

Web Browser

Browser Rendering
Kernel Engine

Google

“Drive-by malware”: malicious web page

exploits a browser bug to read/write local

files or infect them with a virus

HTML, JS

The Chrome browser

Sandbox

Goal: prevent “drive-by
Rendering malware”, where a malicious

Engine

web page exploits a browser
bug to read/write local files
or infect them with a virus

CC}L ,i&{lL

Rendered Bitmap

Browser Kernel } TCB (for this property)

HTML, JS

The Chrome browser

Sandbox

Goal: prevent “drive-by
Rendering malware”, where a malicious

Engine

web page exploits a browser
bug to read/write local files
or infect them with a virus

CC}L ,i&{lL

Rendered Bitmap

Browser Kernel } TCB (for this property)

The Chrome browser

70% of vulnerabilities are
in the rendering engine.

Sandbox

Rendéring 1000K lines of code
Engine

Example: PNG, WMF, GDI+
rendering vulnerabilities in
Windows OS

(?(}L%ghl
HTML, JS Rendered Bitmap
Browser Kernel } 700K lines of code

Summary

» Access control is a key part of security.

* Privilege separation makes systems
more robust: it helps reduce the impact
of security bugs in your code.

 Architect your system to make the TCB
unbypassable, tamper-resistant, and
verifiable (small).

Coming Up ...

* Friday guest lecture:
Malware

 Homework 0 due Friday

* C review session, Saturday, February 18t
2-4pm, 306 Soda

