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Network Intrusion Detection 
•  Approach #1: look at the network traffic 

–  (a “NIDS”: rhymes with “kids”) 
– Scan HTTP requests 
– Look for “/etc/passwd” and/or “../../” 
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Network Intrusion Detection 
•  Approach #1: look at the network traffic 

–  (a “NIDS”: rhymes with “kids”) 
– Scan HTTP requests 
– Look for “/etc/passwd” and/or “../../” 

•  Pros: 
– No need to touch or trust end systems 

•  Can “bolt on” security 
– Cheap: cover many systems w/ single monitor 
– Cheap: centralized management 



Network-Based Detection 

•  Issues: 
– Scan for “/etc/passwd”? 

•  What about other sensitive files? 
– Scan for “../../”? 

•  Sometimes seen in legit. requests (= false positive) 
•  What about “%2e%2e%2f%2e%2e%2f”? (= evasion) 

– Okay, need to do full HTTP parsing 
•  What about “..///.///..////”? 

– Okay, need to understand Unix filename semantics too! 

– What if it’s HTTPS and not HTTP? 
•  Need access to decrypted text / session key - yuck! 



Host-based Intrusion Detection 
•  Approach #2: instrument the web server 

– Host-based IDS  (sometimes called “HIDS”) 
– Scan ?arguments sent to back-end programs 

•  Look for “/etc/passwd” and/or “../../” 
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Host-based Intrusion Detection 
•  Approach #2: instrument the web server 

–  Host-based IDS  (sometimes called “HIDS”) 
–  Scan ?arguments sent to back-end programs 

•  Look for “/etc/passwd” and/or “../../” 

•  Pros: 
–  No problems with HTTP complexities like %-escapes 
–  Works for encrypted HTTPS! 

•  Issues: 
–  Have to add code to each (possibly different) web server 

•  And that effort only helps with detecting web server attacks 
–  Still have to consider Unix filename semantics (“..////.//”) 
–  Still have to consider other sensitive files 



Log Analysis 
•  Approach #3: each night, script runs to analyze log 

files generated by web servers 
–  Again scan ?arguments sent to back-end programs 
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Log Analysis 
•  Approach #3: each night, script runs to analyze log files 

generated by web servers 
–  Again scan ?arguments sent to back-end programs 

•  Pros: 
–  Cheap: web servers generally already have such logging facilities 

built into them  
–  No problems like %-escapes, encrypted HTTPS 

•  Issues: 
–  Again must consider filename tricks, other sensitive files 
–  Can’t block attacks & prevent from happening 
–  Detection delayed, so attack damage may compound 
–  If the attack is a compromise, then malware might be able to alter 

the logs before they’re analyzed 
•  (Not a problem for directory traversal information leak example) 



System Call Monitoring (HIDS) 
•  Approach #4: monitor system call activity of 

backend processes 
– Look for access to /etc/passwd 
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System Call Monitoring (HIDS) 
•  Approach #4: monitor system call activity of 

backend processes 
–  Look for access to /etc/passwd 

•  Pros: 
–  No issues with any HTTP complexities 
–  May avoid issues with filename tricks 
–  Attack only leads to an “alert” if attack succeeded 

•  Sensitive file was indeed accessed 

•  Issues: 
–  Maybe other processes make legit accesses to the 

sensitive files (false positives) 
–  Maybe we’d like to detect attempts even if they fail? 

•  “situational awareness” 



Detection Accuracy 
•  Two types of detector errors: 

–  False positive (FP): alerting about a problem when in 
fact there was no problem 

–  False negative (FN): failing to alert about a problem 
when in fact there was a problem 

•  Detector accuracy is often assessed in terms of 
rates at which these occur: 
–  Define Ι to be the event of an instance of intrusive 

behavior occurring (something we want to detect)  
–  Define Α to be the event of detector generating alarm 

•  Define: 
–  False positive rate = P[Α|¬Ι] 
–  False negative rate = P[¬Α| Ι] 



Perfect Detection 
•  Is it possible to build a detector for our example 

with a false negative rate of 0%? 
•  Algorithm to detect bad URLs with 0% FN rate: 

void	
  my_detector_that_never_misses(char	
  *URL)	
  
{	
  
	
  	
  	
  	
  printf("yep,	
  it's	
  an	
  attack!\n");	
  
}	
  

–  In fact, it works for detecting any bad activity with no 
false negatives!  Woo-hoo! 

•  Wow, so what about a detector for bad URLs that 
has NO FALSE POSITIVES?! 
–  printf("nope,	
  not	
  an	
  attack\n");	
  



Detection Tradeoffs 
•  The art of a good detector is achieving an 

effective balance between FPs and FNs 
•  Suppose our detector has an FP rate of 

0.1% and an FN rate of 2%.  Is it good 
enough?  Which is better, a very low FP rate 
or a very low FN rate? 
– Depends on the cost of each type of error … 

•  E.g., FP might lead to paging a duty officer and 
consuming hour of their time; FN might lead to $10K 
cleaning up compromised system that was missed 

– … but also critically depends on the rate at 
which actual attacks occur in your environment 



Base Rate Fallacy 
•  Suppose our detector has a FP rate of 0.1% (!) 

and a FN rate of 2% (not bad!) 
•  Scenario #1: our server receives 1,000 URLs/day, 

and 5 of them are attacks 
–  Expected # FPs each day = 0.1% * 995 ≈ 1 
–  Expected # FNs each day = 2% * 5 = 0.1    (< 1/week) 
–  Pretty good! 

•  Scenario #2: our server receives 10,000,000 URLs/
day, and 5 of them are attacks 
–  Expected # FPs each day ≈ 10,000 :-( 

•  Nothing changed about the detector; only our 
environment changed 
–  Accurate detection very challenging when base rate of activity 

we want to detect is quite low 



Styles of Detection: Signature-Based 
•  Idea: look for activity that matches the structure of 

a known attack 
•  Example (from the freeware Snort NIDS): 

alert tcp $EXTERNAL_NET any -> $HOME_NET 
139 flow:to_server,established 

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|" 
msg:"EXPLOIT x86 linux samba overflow" 
reference:bugtraq,1816 
reference:cve,CVE-1999-0811 
classtype:attempted-admin 

•  Can be at different semantic layers 
e.g.: IP/TCP header fields; packet payload; URLs 



Signature-Based Detection 
•  E.g. for FooCorp, search for “../../” or “/etc/

passwd” 
•  What’s nice about this approach? 

–  Conceptually simple 
–  Takes care of known attacks (of which there are zillions) 
–  Easy to share signatures, build up libraries 

•  What’s problematic about this approach? 
–  Blind to novel attacks 
–  Might even miss variants of known attacks (“..///.//../”) 

•  Of which there are zillions 
–  Simpler versions look at low-level syntax, not semantics 

•  Can lead to weak power (either misses variants, or generates 
lots of false positives) 



Vulnerability Signatures 
•  Idea: don’t match on known attacks, match on known 

problems 
•  Example (also from Snort): 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80  
uricontent: ".ida?"; nocase; dsize: > 239; flags:A+ 
msg:"Web-IIS ISAPI .ida attempt" 
reference:bugtraq,1816 
reference:cve,CAN-2000-0071 
classtype:attempted-admin 

•  That is, match URIs that invoke *.ida?*, have more than 
239 bytes of payload, and have ACK set (maybe others too) 

•  This example detects any* attempt to exploit a particular 
buffer overflow in IIS web servers 
–  Used by the “Code Red” worm 
*  (Note, signature is not quite complete) 



Vulnerability Signatures 
•  What’s nice about this approach? 

– Conceptually fairly simple 
– Takes care of known attacks 
– Easy to share signatures, build up libraries 

– Can detect variants of known attacks 
– Much more concise than per-attack signatures 

•  What’s problematic? 
– Can’t detect novel attacks (new vulnerabilities) 
– Signatures can be hard to write / express 

•  Can’t just observe an attack that works … 
•  … need to delve into how it works 

Benefits	
  of	
  a+ack	
  signatures	
  



Styles of Detection: Anomaly-Based 
•  Idea: attacks look peculiar. 
•  High-level approach: develop a model of normal 

behavior (say based on analyzing historical logs).  
Flag activity that deviates from it. 

•  FooCorp example: maybe look at distribution of 
characters in URL parameters, learn that some are 
rare and/or don’t occur repeatedly 
–  If we happen to learn that ‘.’s have this property, then 

could detect the attack even without knowing it exists 
•  Big benefit: potential detection of a wide range of 

attacks, including novel ones 



Anomaly Detection 
•  What’s problematic about this approach? 

– Can fail to detect known attacks 
– Can fail to detect novel attacks, if don’t happen 

to look peculiar along measured dimension 
– What happens if the historical data you train on 

includes attacks? 
– Base Rate Fallacy particularly acute: if 

prevalence of attacks is low, then you’re more 
often going to see benign outliers 

•  High FP rate 
•  OR: require such a stringent deviation from “normal” 

that most attacks are missed (high FN rate) 
Hard	
  to	
  make	
  work	
  well	
  -­‐	
  not	
  widely	
  used	
  today	
  



Specification-Based Detection 
•  Idea: don’t learn what’s normal; specify what’s 

allowed 
•  FooCorp example: decide that all URL parameters 

sent to foocorp.com servers must have at most 
one ‘/’ in them 
–  Flag any arriving param with > 1 slash as an attack 

•  What’s nice about this approach? 
–  Can detect novel attacks 
–  Can have low false positives 

•  If FooCorp audits its web pages to make sure they comply  

•  What’s problematic about this approach? 
–  Expensive: lots of labor to derive specifications 

•  And keep them up to date as things change (“churn”) 



Styles of Detection: Behavioral 
•  Idea: don’t look for attacks, look for evidence of compromise 

•  FooCorp example: inspect all output web traffic for any lines 
that match a passwd file 

•  Example for monitoring user shell keystrokes: 
 unset	
  HISTFILE 

•  Example for catching code injection: look at sequences of 
system calls, flag any that prior analysis of a given program 
shows it can’t generate 
–  E.g., observe process executing read(), open(), write(), fork(), 

exec()    … 
–  … but there’s no code path in the (original) program that calls those 

in exactly that order! 



Behavioral-Based Detection 
•  What’s nice about this approach? 

–  Can detect a wide range of novel attacks 
–  Can have low false positives 

•  Depending on degree to which behavior is distinctive  
•  E.g., for system call profiling: no false positives! 

–  Can be cheap to implement 
•  E.g., system call profiling can be mechanized 

•  What’s problematic about this approach? 
–  Post facto detection: discovers that you definitely have a 

problem, w/ no opportunity to prevent it 
–  Brittle: for some behaviors, attacker can maybe avoid it 

•  Easy enough to not type “unset	
  HISTFILE” 
•  How could they evade system call profiling? 

–  Mimicry: adapt injected code to comply w/ allowed call sequences 



The Problem of Evasion 

•  For any detection approach, we need to consider 
how an adversary might (try to) elude it 
–  Note: even if the approach is evadable, it can still be 

useful to operate in practice 
–  But: if it’s very easy to evade, that’s especially 

worrisome (security by obscurity) 

 



Evasion Attacks (High-Level View) 

•  Some evasions reflect incomplete analysis 
–  In our FooCorp example, hex escapes or “..////.//../” alias 
–  In principle, can deal with these with implementation 

care (make sure we fully understand the spec) 

•  Some are due to imperfect observability 
–  For instance, if what NIDS sees doesn’t exactly match 

what arrives at the destination  



The Problem of Evasion 
•  Imperfect observability is particularly acute for 

network monitoring 
•  Consider detecting occurrences of the (arbitrary) 

string “root” inside a network connection … 
–  We get a copy of each packet, how hard can it be? 



Detecting “root”: Attempt #1 

•  Method: scan each packet for ‘r’, ‘o’, ‘o’, ‘t’ 
o  Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters … 

 …….….root………..…………
1	



Oops: TCP doesn’t preserve text boundaries	



Are we done?	



Packet	



…….….ro
1	



Packet #1	



ot………..…………

2	



Packet #2	

 Fix? 



Detecting “root”: Attempt #2 
•  Okay: remember match from end of previous packet 

Oops: IP doesn’t guarantee in-order arrival	



ot………..…………

2	



…….….ro
1	

?	



- Now we’re managing state :-( 
  Are we done? 

…….….ro
1	



Packet #1	



When 2nd packet arrives, continue working on the match 

ot………..…………

Packet #2	



2	



+	





•  Fix? 

•  We need to reassemble the entire TCP bytestream 
–  Match sequence numbers 
–  Buffer packets with later data (above a sequence “hole”) 

•  Issues? 
–  Potentially requires a lot of state 
–  Plus: attacker can cause us to exhaust state by sending 

lots of data above a sequence hole 

•  But at least we’re done, right? 

Detecting “root”: Attempt #3 



Full TCP Reassembly is Not Enough 
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•  Fix? 
•  Idea: NIDS can alert upon seeing a retransmission 

inconsistency, as surely it reflects someone up to no good 
•  This doesn’t work well in practice: TCP retransmissions 

broken in this fashion occur in live traffic 
–  Fairly rare (23 times in a day of ICSI traffic) 
–  But real evasions much rarer still (Base Rate Fallacy) 
⇒  This is a general problem with alerting on such ambiguities 

•  Idea: if NIDS sees such a connection, kill it 
–  Works for this case, since benign instance is already fatally broken 
–  But for other evasions, such actions have collateral damage 

•  Idea: rewrite traffic to remove ambiguities 
–  Works for network- & transport-layer ambiguities 
–  But must operate in-line and at line speed 

Inconsistent TCP Retransmissions 



Summary of Evasion Issues 

•  Evasions arise from uncertainty (or incompleteness) 
because detector must infer behavior/processing it can’t 
directly observe 
–  A general problem any time detection separate from potential target 

•  One general strategy: impose canonical form (“normalize”) 
–  E.g., rewrite URLs to expand/remove hex escapes  
–  E.g., enforce blog comments to only have certain HTML tags  

•  (Another strategy: analyze all possible interpretations rather 
than assuming one 
–  E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL …) 

•  Another strategy: fix the basic observation problem 
–  E.g., monitor directly at end systems  



Inside a Modern HIDS (“AV”) 
•  URL/Web access blocking: 

–  Prevent users from going to known bad locations 

•  Protocol scanning of network traffic (esp. HTTP) 
–  Detect & block known attacks 
–  Detect & block known malware communication 

•  Payload scanning 
–  Detect & block known malware 

•  (Auto-update of signatures for these) 
•  Cloud queries regarding reputation 

–  Who else has run this executable and with what results? 
–  What’s known about the remote host / domain / URL? 



Inside a Modern HIDS 
•  Sandbox execution 

–  Run selected executables in constrained/monitored 
environment 

–  Analyze: 
•  System calls 
•  Changes to files / registry 
•  Self-modifying code (polymorphism/metamorphism) 

•  File scanning 
–  Look for malware that installs itself on disk 

•  Memory scanning 
–  Look for malware that never appears on disk 

•  Runtime analysis 
–  Apply heuristics/signatures to execution behavior 



Inside a Modern NIDS 
•  Deployment inside network as well as at border 

–  Greater visibility, including tracking of user identity 
•  Full protocol analysis 

–  Including extraction of complex embedded objects 
–  In some systems, 100s of known protocols 

•  Signature analysis (also behavioral) 
–  Known attacks, malware communication, blacklisted 

hosts/domains 
–  Known malicious payloads 
–  Sequences/patterns of activity 

•  Shadow execution (e.g., Flash, PDF programs) 
•  Extensive logging (in support of forensics) 
•  Auto-update of signatures, blacklists 



NIDS vs. HIDS 
•  NIDS benefits: 

–  Can cover a lot of systems with single deployment 
•  Much simpler management 

–  Easy to “bolt on” / no need to touch end systems 
–  Doesn’t consume production resources on end systems 
–  Harder for an attacker to subvert / less to trust 

•  HIDS benefits: 
–  Can have direct access to semantics of activity 

•  Better positioned to block (prevent) attacks 
•  Harder to evade 

–  Can protect against non-network threats 
–  Visibility into encrypted activity 
–  Performance scales much more readily (no chokepoint) 

•  No issues with “dropped” packets 



Extra Material 



Detection vs. Blocking 
•  If we can detect attacks, how about blocking them? 
•  Issues: 

–  Not a possibility for retrospective analysis (e.g., nightly 
job that looks at logs) 

–  Quite hard for detector that’s not in the data path 
•  E.g. How can NIDS that passively monitors traffic block attacks? 

–  Change firewall rules dynamically; forge RST packets 
–  And still there’s a race regarding what attacker does before block 

–  False positives get more expensive 
•  You don’t just bug an operator, you damage production activity 

•  Today’s technology/products pretty much all offer 
blocking 
–  Intrusion prevention systems (IPS - “eye-pee-ess”) 



Can We Build An IPS 
That Blocks All Attacks?  



An Alternative Paradigm 
•  Idea: rather than detect attacks, launch them yourself! 
•  Vulnerability scanning: use a tool to probe your own 

systems with a wide range of attacks, fix any that succeed 
•  Pros? 

–  Accurate: if your scanning tool is good, it finds real problems 
–  Proactive: can prevent future misuse 
–  Intelligence: can ignore IDS alarms that you know can’t succeed 

•  Issues? 
–  Can take a lot of work 
–  Not so helpful for systems you can’t modify 
–  Dangerous for disruptive attacks 

•  And you might not know which these are … 

•  In practice, this approach is prudent and widely used today 
–  Good complement to also running an IDS 



Styles of Detection: Honeypots 
•  Idea: deploy a sacrificial system that has no 

operational purpose 
•  Any access is by definition not authorized … 
•  … and thus an intruder 

–  (or some sort of mistake) 

•  Provides opportunity to: 
–  Identify intruders 
– Study what they’re up to 
– Divert them from legitimate targets 



Honeypots 
•  Real-world example: some hospitals enter fake 

records with celebrity names … 
–  … to entrap staff who don’t respect confidentiality 

•  What’s nice about this approach? 
–  Can detect all sorts of new threats 

•  What’s problematic about this approach? 
–  Can be difficult to lure the attacker 
–  Can be a lot of work to build a convincing environment 
–  Note: both of these issues matter less when deploying 

honeypots for automated attacks 
•  Because these have more predictable targeting & env. needs 
•  E.g. “spamtraps”: fake email addresses to catching spambots 



Forensics 

•  Vital complement to detecting attacks: figuring 
out what happened in wake of successful attack 

•  Doing so requires access to rich/extensive logs 
–  Plus tools for analyzing/understanding them 

•  It also entails looking for patterns and 
understanding the implications of structure seen 
in activity 
–  An iterative process (“peeling the onion”) 



Other Attacks on IDSs 
•  DoS: exhaust its memory 

–  IDS has to track ongoing activity 
–  Attacker generates lots of different forms of activity, 

consumes all of its memory 
•  E.g., spoof zillions of distinct TCP SYNs … 
•  … so IDS must hold zillions of connection records  

•  DoS: exhaust its processing 
–  One sneaky form: algorithmic complexity attacks 

•  E.g., if IDS uses a predictable hash function to manage 
connection records … 

•  … then generate series of hash collisions 

•  Code injection (!) 
–  After all, NIDS analyzers take as input network traffic 

under attacker’s control … 




