
Detecting Attacks

CS 161: Computer Security
Prof. David Wagner

March 10, 2013

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

8. 200 OK
 Output of bin/amazeme

Network Intrusion Detection
•  Approach #1: look at the network traffic

–  (a “NIDS”: rhymes with “kids”)
– Scan HTTP requests
– Look for “/etc/passwd” and/or “../../”

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

NIDS

Monitor sees a copy
of incoming/outgoing
HTTP traffic

8. 200 OK
 Output of bin/amazeme

Network Intrusion Detection
•  Approach #1: look at the network traffic

–  (a “NIDS”: rhymes with “kids”)
– Scan HTTP requests
– Look for “/etc/passwd” and/or “../../”

•  Pros:
– No need to touch or trust end systems

•  Can “bolt on” security
– Cheap: cover many systems w/ single monitor
– Cheap: centralized management

Network-Based Detection

•  Issues:
– Scan for “/etc/passwd”?

•  What about other sensitive files?
– Scan for “../../”?

•  Sometimes seen in legit. requests (= false positive)
•  What about “%2e%2e%2f%2e%2e%2f”? (= evasion)

– Okay, need to do full HTTP parsing
•  What about “..///.///..////”?

– Okay, need to understand Unix filename semantics too!

– What if it’s HTTPS and not HTTP?
•  Need access to decrypted text / session key - yuck!

Host-based Intrusion Detection
•  Approach #2: instrument the web server

– Host-based IDS (sometimes called “HIDS”)
– Scan ?arguments sent to back-end programs

•  Look for “/etc/passwd” and/or “../../”

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

4. amazeme.exe?
profile=xxx

bin/amazeme -p xxx

HIDS instrumentation
added inside here

6. Output of bin/amazeme sent back

Host-based Intrusion Detection
•  Approach #2: instrument the web server

–  Host-based IDS (sometimes called “HIDS”)
–  Scan ?arguments sent to back-end programs

•  Look for “/etc/passwd” and/or “../../”

•  Pros:
–  No problems with HTTP complexities like %-escapes
–  Works for encrypted HTTPS!

•  Issues:
–  Have to add code to each (possibly different) web server

•  And that effort only helps with detecting web server attacks
–  Still have to consider Unix filename semantics (“..////.//”)
–  Still have to consider other sensitive files

Log Analysis
•  Approach #3: each night, script runs to analyze log

files generated by web servers
–  Again scan ?arguments sent to back-end programs

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 bin/amazeme -p xxx

Nightly job runs on this
system, analyzing logs

Log Analysis
•  Approach #3: each night, script runs to analyze log files

generated by web servers
–  Again scan ?arguments sent to back-end programs

•  Pros:
–  Cheap: web servers generally already have such logging facilities

built into them
–  No problems like %-escapes, encrypted HTTPS

•  Issues:
–  Again must consider filename tricks, other sensitive files
–  Can’t block attacks & prevent from happening
–  Detection delayed, so attack damage may compound
–  If the attack is a compromise, then malware might be able to alter

the logs before they’re analyzed
•  (Not a problem for directory traversal information leak example)

System Call Monitoring (HIDS)
•  Approach #4: monitor system call activity of

backend processes
– Look for access to /etc/passwd

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

 5. bin/amazeme -p xxx

Real-time monitoring of
system calls accessing files

System Call Monitoring (HIDS)
•  Approach #4: monitor system call activity of

backend processes
–  Look for access to /etc/passwd

•  Pros:
–  No issues with any HTTP complexities
–  May avoid issues with filename tricks
–  Attack only leads to an “alert” if attack succeeded

•  Sensitive file was indeed accessed

•  Issues:
–  Maybe other processes make legit accesses to the

sensitive files (false positives)
–  Maybe we’d like to detect attempts even if they fail?

•  “situational awareness”

Detection Accuracy
•  Two types of detector errors:

–  False positive (FP): alerting about a problem when in
fact there was no problem

–  False negative (FN): failing to alert about a problem
when in fact there was a problem

•  Detector accuracy is often assessed in terms of
rates at which these occur:
–  Define Ι to be the event of an instance of intrusive

behavior occurring (something we want to detect)
–  Define Α to be the event of detector generating alarm

•  Define:
–  False positive rate = P[Α|¬Ι]
–  False negative rate = P[¬Α| Ι]

Perfect Detection
•  Is it possible to build a detector for our example

with a false negative rate of 0%?
•  Algorithm to detect bad URLs with 0% FN rate:

void	
 my_detector_that_never_misses(char	
 *URL)	

{	

	
 	
 	
 	
 printf("yep,	
 it's	
 an	
 attack!\n");	

}	

–  In fact, it works for detecting any bad activity with no
false negatives! Woo-hoo!

•  Wow, so what about a detector for bad URLs that
has NO FALSE POSITIVES?!
–  printf("nope,	
 not	
 an	
 attack\n");	

Detection Tradeoffs
•  The art of a good detector is achieving an

effective balance between FPs and FNs
•  Suppose our detector has an FP rate of

0.1% and an FN rate of 2%. Is it good
enough? Which is better, a very low FP rate
or a very low FN rate?
– Depends on the cost of each type of error …

•  E.g., FP might lead to paging a duty officer and
consuming hour of their time; FN might lead to $10K
cleaning up compromised system that was missed

– … but also critically depends on the rate at
which actual attacks occur in your environment

Base Rate Fallacy
•  Suppose our detector has a FP rate of 0.1% (!)

and a FN rate of 2% (not bad!)
•  Scenario #1: our server receives 1,000 URLs/day,

and 5 of them are attacks
–  Expected # FPs each day = 0.1% * 995 ≈ 1
–  Expected # FNs each day = 2% * 5 = 0.1 (< 1/week)
–  Pretty good!

•  Scenario #2: our server receives 10,000,000 URLs/
day, and 5 of them are attacks
–  Expected # FPs each day ≈ 10,000 :-(

•  Nothing changed about the detector; only our
environment changed
–  Accurate detection very challenging when base rate of activity

we want to detect is quite low

Styles of Detection: Signature-Based
•  Idea: look for activity that matches the structure of

a known attack
•  Example (from the freeware Snort NIDS):

alert tcp $EXTERNAL_NET any -> $HOME_NET
139 flow:to_server,established

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|"
msg:"EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

•  Can be at different semantic layers
e.g.: IP/TCP header fields; packet payload; URLs

Signature-Based Detection
•  E.g. for FooCorp, search for “../../” or “/etc/

passwd”
•  What’s nice about this approach?

–  Conceptually simple
–  Takes care of known attacks (of which there are zillions)
–  Easy to share signatures, build up libraries

•  What’s problematic about this approach?
–  Blind to novel attacks
–  Might even miss variants of known attacks (“..///.//../”)

•  Of which there are zillions
–  Simpler versions look at low-level syntax, not semantics

•  Can lead to weak power (either misses variants, or generates
lots of false positives)

Vulnerability Signatures
•  Idea: don’t match on known attacks, match on known

problems
•  Example (also from Snort):

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
uricontent: ".ida?"; nocase; dsize: > 239; flags:A+
msg:"Web-IIS ISAPI .ida attempt"
reference:bugtraq,1816
reference:cve,CAN-2000-0071
classtype:attempted-admin

•  That is, match URIs that invoke *.ida?*, have more than
239 bytes of payload, and have ACK set (maybe others too)

•  This example detects any* attempt to exploit a particular
buffer overflow in IIS web servers
–  Used by the “Code Red” worm
*  (Note, signature is not quite complete)

Vulnerability Signatures
•  What’s nice about this approach?

– Conceptually fairly simple
– Takes care of known attacks
– Easy to share signatures, build up libraries

– Can detect variants of known attacks
– Much more concise than per-attack signatures

•  What’s problematic?
– Can’t detect novel attacks (new vulnerabilities)
– Signatures can be hard to write / express

•  Can’t just observe an attack that works …
•  … need to delve into how it works

Benefits	
 of	
 a+ack	
 signatures	

Styles of Detection: Anomaly-Based
•  Idea: attacks look peculiar.
•  High-level approach: develop a model of normal

behavior (say based on analyzing historical logs).
Flag activity that deviates from it.

•  FooCorp example: maybe look at distribution of
characters in URL parameters, learn that some are
rare and/or don’t occur repeatedly
–  If we happen to learn that ‘.’s have this property, then

could detect the attack even without knowing it exists
•  Big benefit: potential detection of a wide range of

attacks, including novel ones

Anomaly Detection
•  What’s problematic about this approach?

– Can fail to detect known attacks
– Can fail to detect novel attacks, if don’t happen

to look peculiar along measured dimension
– What happens if the historical data you train on

includes attacks?
– Base Rate Fallacy particularly acute: if

prevalence of attacks is low, then you’re more
often going to see benign outliers

•  High FP rate
•  OR: require such a stringent deviation from “normal”

that most attacks are missed (high FN rate)
Hard	
 to	
 make	
 work	
 well	
 -­‐	
 not	
 widely	
 used	
 today	

Specification-Based Detection
•  Idea: don’t learn what’s normal; specify what’s

allowed
•  FooCorp example: decide that all URL parameters

sent to foocorp.com servers must have at most
one ‘/’ in them
–  Flag any arriving param with > 1 slash as an attack

•  What’s nice about this approach?
–  Can detect novel attacks
–  Can have low false positives

•  If FooCorp audits its web pages to make sure they comply

•  What’s problematic about this approach?
–  Expensive: lots of labor to derive specifications

•  And keep them up to date as things change (“churn”)

Styles of Detection: Behavioral
•  Idea: don’t look for attacks, look for evidence of compromise

•  FooCorp example: inspect all output web traffic for any lines
that match a passwd file

•  Example for monitoring user shell keystrokes:
 unset	
 HISTFILE

•  Example for catching code injection: look at sequences of
system calls, flag any that prior analysis of a given program
shows it can’t generate
–  E.g., observe process executing read(), open(), write(), fork(),

exec() …
–  … but there’s no code path in the (original) program that calls those

in exactly that order!

Behavioral-Based Detection
•  What’s nice about this approach?

–  Can detect a wide range of novel attacks
–  Can have low false positives

•  Depending on degree to which behavior is distinctive
•  E.g., for system call profiling: no false positives!

–  Can be cheap to implement
•  E.g., system call profiling can be mechanized

•  What’s problematic about this approach?
–  Post facto detection: discovers that you definitely have a

problem, w/ no opportunity to prevent it
–  Brittle: for some behaviors, attacker can maybe avoid it

•  Easy enough to not type “unset	
 HISTFILE”
•  How could they evade system call profiling?

–  Mimicry: adapt injected code to comply w/ allowed call sequences

The Problem of Evasion

•  For any detection approach, we need to consider
how an adversary might (try to) elude it
–  Note: even if the approach is evadable, it can still be

useful to operate in practice
–  But: if it’s very easy to evade, that’s especially

worrisome (security by obscurity)

Evasion Attacks (High-Level View)

•  Some evasions reflect incomplete analysis
–  In our FooCorp example, hex escapes or “..////.//../” alias
–  In principle, can deal with these with implementation

care (make sure we fully understand the spec)

•  Some are due to imperfect observability
–  For instance, if what NIDS sees doesn’t exactly match

what arrives at the destination

The Problem of Evasion
•  Imperfect observability is particularly acute for

network monitoring
•  Consider detecting occurrences of the (arbitrary)

string “root” inside a network connection …
–  We get a copy of each packet, how hard can it be?

Detecting “root”: Attempt #1

•  Method: scan each packet for ‘r’, ‘o’, ‘o’, ‘t’
o  Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters …

 …….….root………..…………
1	

Oops: TCP doesn’t preserve text boundaries	

Are we done?	

Packet	

…….….ro
1	

Packet #1	

ot………..…………

2	

Packet #2	

 Fix?

Detecting “root”: Attempt #2
•  Okay: remember match from end of previous packet

Oops: IP doesn’t guarantee in-order arrival	

ot………..…………

2	

…….….ro
1	

?	

- Now we’re managing state :-(
 Are we done?

…….….ro
1	

Packet #1	

When 2nd packet arrives, continue working on the match

ot………..…………

Packet #2	

2	

+	

•  Fix?

•  We need to reassemble the entire TCP bytestream
–  Match sequence numbers
–  Buffer packets with later data (above a sequence “hole”)

•  Issues?
–  Potentially requires a lot of state
–  Plus: attacker can cause us to exhaust state by sending

lots of data above a sequence hole

•  But at least we’re done, right?

Detecting “root”: Attempt #3

Full TCP Reassembly is Not Enough

NIDS

r r
seq=1, TTL=22

n
seq=1, TTL=16

X

o o
seq=2, TTL=22

i
seq=2, TTL=16

X

o o
seq=3, TTL=22

c
seq=3, TTL=16

X

t t
seq=4, TTL=22

e
seq=4, TTL=16

X

Se
nd

er
 /

 A
tt

ac
ke

r
Receiver

r~~~

~~~~ r~~~ ro~~ roo~ root 

~~~~ 
r~~~?

n~~~?

ri~~?

ni~~?

ri~~? ro~~?

ni~~? no~~?
ric~? roc~? rio~? roo~?
nic~? noc~? nio~?
noo~?

rice? roce? rict? roct?
riot? root? rioe? rooe?
nice? noce? nict? noct?
niot? noot? nioe? nooe?

Packet discarded in transit due
to TTL hop count expiring

TTL field in IP header
specifies maximum

forwarding hop count

Assume the Receiver
is 20 hops away

Assume NIDS is 15 hops away

•  Fix?
•  Idea: NIDS can alert upon seeing a retransmission

inconsistency, as surely it reflects someone up to no good
•  This doesn’t work well in practice: TCP retransmissions

broken in this fashion occur in live traffic
–  Fairly rare (23 times in a day of ICSI traffic)
–  But real evasions much rarer still (Base Rate Fallacy)
⇒  This is a general problem with alerting on such ambiguities

•  Idea: if NIDS sees such a connection, kill it
–  Works for this case, since benign instance is already fatally broken
–  But for other evasions, such actions have collateral damage

•  Idea: rewrite traffic to remove ambiguities
–  Works for network- & transport-layer ambiguities
–  But must operate in-line and at line speed

Inconsistent TCP Retransmissions

Summary of Evasion Issues

•  Evasions arise from uncertainty (or incompleteness)
because detector must infer behavior/processing it can’t
directly observe
–  A general problem any time detection separate from potential target

•  One general strategy: impose canonical form (“normalize”)
–  E.g., rewrite URLs to expand/remove hex escapes
–  E.g., enforce blog comments to only have certain HTML tags

•  (Another strategy: analyze all possible interpretations rather
than assuming one
–  E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL …)

•  Another strategy: fix the basic observation problem
–  E.g., monitor directly at end systems

Inside a Modern HIDS (“AV”)
•  URL/Web access blocking:

–  Prevent users from going to known bad locations

•  Protocol scanning of network traffic (esp. HTTP)
–  Detect & block known attacks
–  Detect & block known malware communication

•  Payload scanning
–  Detect & block known malware

•  (Auto-update of signatures for these)
•  Cloud queries regarding reputation

–  Who else has run this executable and with what results?
–  What’s known about the remote host / domain / URL?

Inside a Modern HIDS
•  Sandbox execution

–  Run selected executables in constrained/monitored
environment

–  Analyze:
•  System calls
•  Changes to files / registry
•  Self-modifying code (polymorphism/metamorphism)

•  File scanning
–  Look for malware that installs itself on disk

•  Memory scanning
–  Look for malware that never appears on disk

•  Runtime analysis
–  Apply heuristics/signatures to execution behavior

Inside a Modern NIDS
•  Deployment inside network as well as at border

–  Greater visibility, including tracking of user identity
•  Full protocol analysis

–  Including extraction of complex embedded objects
–  In some systems, 100s of known protocols

•  Signature analysis (also behavioral)
–  Known attacks, malware communication, blacklisted

hosts/domains
–  Known malicious payloads
–  Sequences/patterns of activity

•  Shadow execution (e.g., Flash, PDF programs)
•  Extensive logging (in support of forensics)
•  Auto-update of signatures, blacklists

NIDS vs. HIDS
•  NIDS benefits:

–  Can cover a lot of systems with single deployment
•  Much simpler management

–  Easy to “bolt on” / no need to touch end systems
–  Doesn’t consume production resources on end systems
–  Harder for an attacker to subvert / less to trust

•  HIDS benefits:
–  Can have direct access to semantics of activity

•  Better positioned to block (prevent) attacks
•  Harder to evade

–  Can protect against non-network threats
–  Visibility into encrypted activity
–  Performance scales much more readily (no chokepoint)

•  No issues with “dropped” packets

Extra Material

Detection vs. Blocking
•  If we can detect attacks, how about blocking them?
•  Issues:

–  Not a possibility for retrospective analysis (e.g., nightly
job that looks at logs)

–  Quite hard for detector that’s not in the data path
•  E.g. How can NIDS that passively monitors traffic block attacks?

–  Change firewall rules dynamically; forge RST packets
–  And still there’s a race regarding what attacker does before block

–  False positives get more expensive
•  You don’t just bug an operator, you damage production activity

•  Today’s technology/products pretty much all offer
blocking
–  Intrusion prevention systems (IPS - “eye-pee-ess”)

Can We Build An IPS
That Blocks All Attacks?

An Alternative Paradigm
•  Idea: rather than detect attacks, launch them yourself!
•  Vulnerability scanning: use a tool to probe your own

systems with a wide range of attacks, fix any that succeed
•  Pros?

–  Accurate: if your scanning tool is good, it finds real problems
–  Proactive: can prevent future misuse
–  Intelligence: can ignore IDS alarms that you know can’t succeed

•  Issues?
–  Can take a lot of work
–  Not so helpful for systems you can’t modify
–  Dangerous for disruptive attacks

•  And you might not know which these are …

•  In practice, this approach is prudent and widely used today
–  Good complement to also running an IDS

Styles of Detection: Honeypots
•  Idea: deploy a sacrificial system that has no

operational purpose
•  Any access is by definition not authorized …
•  … and thus an intruder

–  (or some sort of mistake)

•  Provides opportunity to:
–  Identify intruders
– Study what they’re up to
– Divert them from legitimate targets

Honeypots
•  Real-world example: some hospitals enter fake

records with celebrity names …
–  … to entrap staff who don’t respect confidentiality

•  What’s nice about this approach?
–  Can detect all sorts of new threats

•  What’s problematic about this approach?
–  Can be difficult to lure the attacker
–  Can be a lot of work to build a convincing environment
–  Note: both of these issues matter less when deploying

honeypots for automated attacks
•  Because these have more predictable targeting & env. needs
•  E.g. “spamtraps”: fake email addresses to catching spambots

Forensics

•  Vital complement to detecting attacks: figuring
out what happened in wake of successful attack

•  Doing so requires access to rich/extensive logs
–  Plus tools for analyzing/understanding them

•  It also entails looking for patterns and
understanding the implications of structure seen
in activity
–  An iterative process (“peeling the onion”)

Other Attacks on IDSs
•  DoS: exhaust its memory

–  IDS has to track ongoing activity
–  Attacker generates lots of different forms of activity,

consumes all of its memory
•  E.g., spoof zillions of distinct TCP SYNs …
•  … so IDS must hold zillions of connection records

•  DoS: exhaust its processing
–  One sneaky form: algorithmic complexity attacks

•  E.g., if IDS uses a predictable hash function to manage
connection records …

•  … then generate series of hash collisions

•  Code injection (!)
–  After all, NIDS analyzers take as input network traffic

under attacker’s control …

