Detecting Attacks

CS 161: Computer Security
Prof. David Wagner

Structure of

FooCorp Web Services

| [FHL]

2. GET /amazeme.exe?profile=xxx

=

8.200 OK
Output of binf/amazeme

T 1

FooCorp’s

Remote client

border router

FooCorp
Servers

| L1l

i

Front-end web server

I

bin/amazeme -p xxx

Network Intrusion Detection

* Approach #1: look at the network traffic
— (a “NIDS”: rhymes with “kids™)
— Scan HTTP requests
— Look for “/etc/passwd’™ and/or “../../"

Structure of

FooCorp Web Services

| [FAL]

=

2. GET /amazeme.exe?profile=xxx

8.200 OK
Output of binf/amazeme

BT

Remote client

Monitor sees a copy

e

NIDS

’ of incoming/outgoing % FooCorp
FOOCOMD'S o affic — Servers
border router J —
B o —
U | J
.l Front-end web server
. " |||_| I 7|| [i

I

bin/amazeme -p xxx

Network Intrusion Detection

* Approach #1: look at the network traffic
—(a “NIDS”: rhymes with “kids™)
— Scan HTTP requests
— Look for “/etc/passwd’™ and/or “../../"

* Pros:

— No need to end systems
 Can “bolt on” security

— Cheap: cover many systems w/ single monitor
— Cheap: centralized management

Network-Based Detection

e |Ssues:

— Scan for “/etc/passwd’”?
* What about other sensitive files?

— Scan for “../..["7

« Sometimes seen in legit. requests (= false positive)

« What about “%2e%2e%2f%2e%2e%2f"? (= evasion)
— Okay, need to do full HTTP parsing

« What about “..//1.I11.11II"7?

— Okay, need to understand Unix filename semantics too!

—What if its HTTPS and not HTTP?

* Need access to decrypted text / session key - yuck!

Host-based Intrusion Detection

* Approach #2: instrument the web server

— Host-based IDS (sometimes called “HIDS™)

— Scan ?7arguments sent to back-end programs
* Look for “/etc/passwd” and/or “../../"

Structure of
FooCorp Web Services

FooCorp’s
border router

Servers

E FooCorp
h, =

Front-end web server

A

Remote client

1 4

4. amazeme.exe?
profile=xxx lT

6. Output of bin/amazeme sent back

bin/famazeme -p xxx

Host-based Intrusion Detection

* Approach #2: instrument the web server
— Host-based IDS (sometimes called “HIDS™)
— Scan ?7arguments sent to back-end programs
 Look for “/etc/passwd” and/or “../..I"
* Pros:
— No problems with HTTP complexities like %-escapes
— Works for encrypted HTTPS!

* |ssues:

— Have to add code to each (possibly different) web server
« And that effort only helps with detecting web server attacks

— Still have to consider Unix filename semantics (“..////.1I")
— Still have to consider other sensitive files

Log Analysis

« Approach #3: each night, script runs to analyze
generated by web servers

— Again scan ?arguments sent to back-end programs

Structure of
FooCorp Web Services

FooCorp’s
border router

FooCorp
Servers

Ay

>

o TS

Front-end web server

Remote client

I

bin/amazeme -p xxx

Log Analysis

« Approach #3: each night, script runs to analyze log files
generated by web servers

— Again scan 7arguments sent to back-end programs
* Pros:

— Cheap: web servers generally already have such logging facilities
built into them

— No problems like %-escapes, encrypted HTTPS
* |ssues:

— Again must consider filename tricks, other sensitive files
— Can’t block attacks & prevent from happening

— Detection delayed, so attack damage may compound

— If the attack is a compromise, then malware might be able to alter
the logs before they’re analyzed

* (Not a problem for directory traversal information leak example)

System Call Monitoring (HIDS)

* Approach #4: monitor of
backend processes

— Look for access to /etc/passwd

Structure of
FooCorp Web Services

I

FooCorp’s
border router

Remote client

FooCorp
Servers

e

o TS

Front-end web server

I

5. binfamazeme -p xxx

System Call Monitoring (HIDS)

« Approach #4: monitor system call activity of
backend processes

— Look for access to /etc/passwd

* Pros:
— No issues with any HTTP complexities
— May avoid issues with filename tricks

— Attack only leads to an “alert” if attack succeeded
» Sensitive file was indeed accessed

* |ssues:

— Maybe other processes make legit accesses to the
sensitive files (false positives)

— Maybe we’'d like to detect attempts even if they fail?
- “situational awareness”

Detection Accuracy

« Two types of detector errors:

— False positive (FP): alerting about a problem when in
fact there was no problem

— False negative (FN): failing to alert about a problem
when in fact there was a problem

« Detector accuracy is often assessed in terms of
rates at which these occur:

— Define I to be the event of an instance of intrusive
behavior occurring (something we want to detect)

— Define A to be the event of detector generating alarm
* Define:

— False positive rate = P[A|™]]

— False negative rate = P[7A|]]

Perfect Detection

* |s it possible to build a detector for our example
with a false negative rate of 097

 Algorithm to detect bad URLs with 0% FN rate:

void my detector that never misses(char *URL)

{
¥

— In fact, it works for detecting any bad activity with no
false negatives! Woo-hoo!

printf("yep, it's an attack!\n");

 Wow, so what about a detector for bad URLSs that
has NO FALSE POSITIVES?!

- printf("nope, not an attack\n");

Detection Tradeoffs

* The art of a good detector is achieving an
between FPs and FNs

* Suppose our detector has an FP rate of
0.1% and an FN rate of 2%. Is it good
enough? Which is better, a very low FP rate
or a very low FN rate?

— Depends on the cost of each type of error ...

* E.g., FP might lead to paging a duty officer and
consuming hour of their time; FN might lead to $10K
cleaning up compromised system that was missed

— ... but also critically depends on the rate at
which actual attacks occur in your environment

Base Rate Fallacy

Suppose our detector has a FP rate of 0.1% (!)
and a FN rate of 2% (not bad!)

Scenario #1: our server receives 1,000 URLs/day,
and 5 of them are attacks

— Expected # FPs each day = 0.1% * 995 = 1

— Expected # FNs eachday = 2% *5=0.1 (< 1/week)

— Pretty good!

Scenario #2: our server receives 10,000,000 URLs/
day, and 5 of them are attacks
— Expected # FPs each day = 10,000 :-(

Nothing changed about the detector, only our
environment changed

— Accurate detection very challenging when of activity
we want to detect is quite low

Styles of Detection: Signature-Based

 |dea: look for activity that matches the structure of
a
« Example (from the freeware Snort NIDS):

alert tcp $EXTERNAL_NET any -> $HOME_NET
139 flow:to server,established

content:" |eb2f 5feb 4a5e 89fb 893e 89f2|"
msqg: "EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

» Can be at different semantic layers
e.g.: IP/TCP header fields; packet payload; URLs

Signature-Based Detection

 E.g. for FooCorp, search for “../../"” or “/etc/
passwd’

* What's nice about this approach?
— Conceptually simple
— Takes care of known attacks (of which there are zillions)
— Easy to share signatures, build up libraries

 What's problematic about this approach?

— Blind to novel attacks
— Might even miss variants of known attacks (“..///./]..["")
« Of which there are zillions

— Simpler versions look at low-level syntax, not

« Can lead to weak power (either misses variants, or generates
lots of false positives)

Vulnerability Signatures

ldea: don’t match on known attacks, match on

Example (also from Snort):

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
uricontent: ".ida?";, nocase; dsize: > 239; flags:A+
msg:'"Web-IIS ISAPI .ida attempt"”
reference:bugtraq, 1816

reference:cve,CAN-2000-0071
classtype:attempted-admin

That is, match URIs that invoke *.ida”?*, have more than
239 bytes of payload, and have ACK set (maybe others too)

This example detects any™ attempt to exploit a particular

buffer overflow in IIS web servers

— Used by the “Code Red” worm
* (Note, signature is not quite complete)

Vulnerability Signatures

* What's nice about this approach?
— Conceptually fairly simple | enefits of attack signatures
— Takes care of known attacks
— Easy to share signatures, build up libraries
— Can detect variants of known attacks
— Much more than per-attack signatures

* What's problematic?
— Can’t detect novel attacks (new vulnerabilities)

— Signatures can be hard to write / express
« Can'’t just observe an attack that works ...
* ... heed to delve into it works

Styles of Detection: Anomaly-Based

 |dea: attacks look peculiar.

* High-level approach: develop a model of
behavior (say based on analyzing historical logs).
Flag activity that deviates from it.

« FooCorp example: maybe look at distribution of
characters in URL parameters, learn that some are
rare and/or don’t occur repeatedly
— If we happen to learn that “." s have this property, then

could detect the attack even without knowing it exists

* Big benefit: potential detection of a wide range of
attacks,

Anomaly Detection

* What's problematic about this approach?
— Can fail to detect known attacks

— Can fail to detect novel attacks, if don’t happen
to look peculiar along measured dimension

— What happens if the historical data you train on
includes attacks?

- particularly acute: if
prevalence of attacks is low, then you're more
often going to see benign outliers

« High FP rate

« OR: require such a stringent deviation from “normal”
that most attacks are missed (high FN rate)

Hard to make work well - not widely used today

Specification-Based Detection

ldea: don't learn what's normal; specify what's
allowed

FooCorp example: decide that all URL parameters
sent to foocorp.com servers must have at most
one ‘/’ in them

— Flag any arriving param with > 1 slash as an attack
What's nice about this approach?

— Can detect novel attacks

— Can have low false positives
 If FooCorp audits its web pages to make sure they comply

What's problematic about this approach?

— Expensive: lots of labor to derive specifications
« And keep them up to date as things change (“churn”™)

Styles of Detection: Behavioral

|dea: don’t look for attacks, look for evidence of compromise

FooCorp example: inspect all output web traffic for any lines
that match a passwd file

Example for monitoring user shell keystrokes:
unset HISTFILE

Example for catching . look at sequences of

system calls, flag any that prior analysis of a given program

shows it can’t generate

— E.g., observe process executing read(), open(), write(), fork(),
exec()

— ... but there’s no code path in the (original) program that calls those
in exactly that order!

Behavioral-Based Detection

* What's nice about this approach?
— Can detect a wide range of novel attacks

— Can have low false positives
« Depending on degree to which behavior is distinctive
« E.g., for system call profiling:

— Can be cheap to implement
« E.g., system call profiling can be mechanized

 What's problematic about this approach?

— Post facto detection: discovers that you definitely have a
problem, w/ no opportunity to prevent it

— Brittle: for some behaviors, attacker can maybe avoid it
« Easy enough to not type “unset HISTFILE”

* How could they evade system call profiling?
— Mimicry: adapt injected code to comply w/ allowed call sequences

The Problem of Evasion

* For any detection approach, we need to consider
how an adversary might (try to) elude it

— Note: even if the approach is evadable, it can still be
useful to operate in practice

— But: if it's very easy to evade, that's especially
worrisome (security by obscurity)

Evasion Attacks (High-Level View)

« Some evasions reflect incomplete analysis
— In our FooCorp example, hex escapes or “..///[./]..I" alias

— In principle, can deal with these with implementation
care (make sure we fully understand the spec)

« Some are due to imperfect observability

— For instance, if what NIDS sees doesn’t exactly match
what arrives at the destination

The Problem of Evasion

* Imperfect observability is particularly acute for
network monitoring

« Consider detecting occurrences of the (arbitrary)
string “root’ inside a network connection ...

— We get a copy of each packet, how hard can it be?

Detecting “root™: Attempt #1

. Method: scan each packet for r', ‘o', ‘o, ‘t’

Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters ...

1 lllllllllllrootlIll.ll.lllllllllllllll

Are we done?

Oops: TCP doesn’t preserve text boundaries

1 2

Illllllllllro otlIIIIIIIIIIIIIIIIIIIIII

Fix?

Detecting “root”: Attempt #2

- Okay: remember match from end of previous packet

{ y

Illllllllllro otl"IIIIIIIIIIIIIIIIIIIII

When 2nd packet arrives, continue working on the match

- Now we’re managing state :-(
Are we done”?

Oops: IP doesn’t guarantee in-order arrival

2 P

otlIIIIIIIIIIIIIIIIKIIII’ ! III-IIIIIIIro

Detecting “root”: Attempt #3

Fix?

We need to reassemble the entire TCP bytestream
— Match sequence numbers

— Buffer packets with later data (above a sequence “hole™)
Issues?

— Potentially requires a lot of state

— Plus: attacker can cause us to exhaust state by sending
lots of data above a sequence hole

But at least we're done, right?

"
Full TCP Reassembly is Not Enough

r seq=1, TTL=22 _ I

O seq=1{TTL=16 H y
% = seq=2, TTL=16 :| Packet discarded in transit due |
B [—9 o TTL hop cdunt expiring .
<L 5 seq=2, TTL=22 i s I &
~ H g FB
a—) c seq=3, TTL=16 Joﬁ N =
-8 seq=3, TTL=22 m (—Q
O 0] @ » O
U seq=4, TTL=22

t q 4 Q > t

s seq=4, TTL=16 é>f >

H ¢ W

rice? roce? rict? roct?
riot? lﬂﬁm%oem
nice? nmm 2;oct?

\nmtr?'-hoot'-’ hioe? nooe?

/

NIDS

Inconsistent TCP Retransmissions

o Fix?
« Idea: NIDS can alert upon seeing a retransmission
iInconsistency, as surely it reflects someone up to no good

* This doesn’t work well in practice: TCP retransmissions
broken in this fashion occur in live traffic
— Fairly rare (23 times in a day of ICSI traffic)
— But real evasions much rarer still (Base Rate Fallacy)
=> This is a general problem with alerting on such ambiguities

 Idea: if NIDS sees such a connection, kill it
— Works for this case, since benign instance is already fatally broken
— But for other evasions, such actions have collateral damage
 l|dea: rewrite traffic to remove ambiguities

— Works for network- & transport-layer ambiguities
— But must operate in-line and at line speed

Summary of Evasion Issues

Evasions arise from uncertainty (or incompleteness)
because detector must infer behavior/processing it can’t

directly observe
— A general problem any time detection separate from potential target

One general strategy: impose canonical form (“normalize”)
— E.g., rewrite URLs to expand/remove hex escapes
— E.g., enforce blog comments to only have certain HTML tags

(Another strategy: analyze all possible interpretations rather
than assuming one
— E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL ...)

Another strategy: fix the basic observation problem
— E.g., monitor at end systems

Inside a Modern HIDS (“AV")

URL/Web access blocking:

— Prevent users from going to known bad locations

Protocol scanning of network traffic (esp. HTTP)
— Detect & block known attacks
— Detect & block known malware communication

Payload scanning

— Detect & block known malware

(Auto-update of signatures for these)
regarding reputation

— Who else has run this executable and with what results?
— What’s known about the remote host / domain / URL?

Inside a Modern HIDS

— Run selected executables in constrained/monitored
environment

— Analyze:
« System calls
« Changes to files / registry
» Self-modifying code (polymorphism/metamorphism)

File scanning
— Look for malware that installs itself on disk

Memory scanning
— Look for malware that never appears on disk

Runtime analysis
— Apply heuristics/signatures to execution behavior

Inside a Modern NIDS

Deployment inside network as well as at border
— Greater visibility, including

Full protocol analysis
— Including extraction of complex embedded objects
— In some systems, 100s of known protocols

Signature analysis (also behavioral)

— Known attacks, malware communication, blacklisted
hosts/domains

— Known malicious payloads
— Sequences/patterns of activity

Shadow execution (e.g., Flash, PDF programs)
Extensive logging (in support of forensics)
Auto-update of signatures, blacklists

NIDS vs. HIDS

* NIDS benefits:

— Can with single deployment
* Much simpler management

— Easy to “bolton” /
— Doesn’t consume production resources on end systems
— Harder for an attacker to subvert / less to trust

« HIDS benefits:

— Can have of activity
» Better positioned to block (prevent) attacks
» Harder to evade

— Can protect against non-network threats

— Visibility into encrypted activity

— Performance scales much more readily (no chokepoint)
« No issues with “dropped” packets

Extra Material

Detection vs. Blocking

* |If we can detect attacks, how about blocking them?

e |ssues:

— Not a possibility for retrospective analysis (e.g., nightly
job that looks at logs)

— Quite hard for detector that’s not in the data path

« E.g. How can NIDS that passively monitors traffic block attacks?
— Change firewall rules dynamically; forge RST packets
— And still there’s a race regarding what attacker does before block

— False positives get more expensive
* You don'’t just bug an operator, you damage production activity
« Today’s technology/products pretty much all offer
blocking

— Intrusion prevention systems (IPS - “eye-pee-ess”)

Can We Build An IPS

That Blocks All Attacks?

The Ultimately Secure DEEP PACKET INSPECTION AND
APPLICATION SECURITY SYSTEM

Featuring signature-less anomaly detection and blocking
technology with application awareness and layer-7 state
tracking!!!

(Formerly: The Ultimately Secure INTRUSION PREVENTION SYSTEM
Featuring signature-less anomaly detection and blocking technology!!)

An Alternative Paradigm

|dea: rather than detect attacks,

Vulnerability scanning: use a tool to probe your own
systems with a wide range of attacks, fix any that succeed

Pros?

— Accurate: if your scanning tool is good, it finds real problems

— Proactive: can prevent future misuse

— Intelligence: can ignore IDS alarms that you know can'’t succeed

Issues?
— Can take a lot of work
— Not so helpful for systems you can’t modify
— Dangerous for disruptive attacks
* And you might not know which these are ...
In practice, this approach is and widely used today
— Good complement to also running an IDS

Styles of Detection: Honeypots

ldea: deploy a that has no
operational purpose

Any access is by definition not authorized ...

... and thus an intruder
— (or some sort of mistake)

Provides opportunity to:
— ldentify intruders

— Study what they 're up to
— Divert them from legitimate targets

Honeypots

« Real-world example: some hospitals enter fake
records with celebrity names ...
— ... to entrap staff who don’t respect confidentiality

* What's nice about this approach?
— Can detect

 What's problematic about this approach?
— Can be difficult to lure the attacker
— Can be a lot of work to build a convincing environment

— Note: both of these issues matter less when deploying
honeypots for automated attacks

« Because these have more predictable targeting & env. needs

« Eg.” ”: fake email addresses to catching spambots

Forensics

 Vital complement to detecting attacks: figuring
out iIn wake of successful attack

* Doing so requires access to rich/extensive logs
— Plus tools for analyzing/understanding them

* |t also entails looking for patterns and
understanding the implications of structure seen
In activity
— An (“peeling the onion™)

Other Attacks on IDSs

* DoS: exhaust its memory
— IDS has to track ongoing activity

— Attacker generates lots of different forms of activity,
consumes all of its memory
* E.g., spoof zillions of distinct TCP SYNs ...
... so0 IDS must hold zillions of connection records

* DoS: exhaust its processing

— One sneaky form:

« E.g., if IDS uses a predictable hash function to manage
connection records ...

* ... then generate series of hash collisions
« Code injection (!)

— After all, NIDS analyzers take as input network traffic
under attacker’s control ...

Riverbed Technology WinPcap

.
W | R E S H AR K the world's foremost network protocol analyzer

Wireshark Get Help Develop Custom Search Search

Security Advisories

The following Wireshark releases fix serious security vulnerabilities. If you are running a vulnerable version of Wireshark

ﬁU [r@ = you should consider upgrading.
U @ wnpa-sec-2013—0w in 1.8.5, 1.6.13
wnpa-sec-2013-08: Wires engine crash, fixed in 1.8.5, 1.6.13
wnpa-sec-2013-07: DCP-ETSI dissector crash, fixed in 1.8.5, 1.6.13
wnpa-sec-2013-06: ROHC dissector crash, fixed in 1.8.5
wnpa-sec-2013-05: DTLS dissector crash, fixed in 1.8.5, 1.6.13
wnpa-sec-2013-04: MS-MMC dissector crash, fixed in 1.8.5, 1.6.13
wnpa-sec-2013-03: DTN dissector crash, fixed in 1.8.5, 1.6.13
wnpa-sec-2013-02: CLNP dissector crash, fixed in 1.8.5, 1.6.13

