
Denial-of-Service (DoS)

CS 161: Computer Security
Prof. David Wagner

March 5, 2013

Attacks on Availability

•  Denial-of-Service (DoS): preventing legitimate
users from using a computing service

•  We do though need to consider our threat model …
–  What might motivate a DoS attack?

Motivations for DoS

•  Showing off / entertainment / ego
•  Competitive advantage

– Maybe commercial, maybe just to win
•  Vendetta / denial-of-money
•  Extortion
•  Political statements
•  Impair defenses
•  Espionage
•  Warfare

Attacks on Availability

•  Deny service via a program flaw (“*NULL”)
– E.g., supply an input that crashes a server
– E.g., fool a system into shutting down

•  Deny service via resource exhaustion
(“while(1);”)
– E.g., consume CPU, memory, disk, network

•  Network-level DoS vs application-level DoS

DoS & Operating Systems
•  How could you DoS a multi-user Unix system on which

you have a login?

DoS & Operating Systems
•  How could you DoS a multi-user Unix system on which

you have a login?
–  char	
 buf[1024];	

int	
 f	
 =	
 open("/tmp/junk");	
 	

while	
 (1)	
 write(f,	
 buf,	
 sizeof(buf));	

•  Gobble up all the disk space!	

–  while	
 (1)	
 fork();

•  Create a zillion processes!
–  Create zillions of files, keep opening, reading, writing, deleting

•  Thrash the disk
–  … doubtless many more

•  Defenses?

DoS & Operating Systems
•  How could you DoS a multi-user Unix system on which

you have a login?
–  char	
 buf[1024];	

int	
 f	
 =	
 open("/tmp/junk");	
 	

while	
 (1)	
 write(f,	
 buf,	
 sizeof(buf));	

•  Gobble up all the disk space!	

–  while	
 (1)	
 fork();

•  Create a zillion processes!
–  Create zillions of files, keep opening, reading, writing, deleting

•  Thrash the disk
–  … doubtless many more

•  Defenses?
–  Isolate users / impose quotas

Network-level DoS

•  Can exhaust network resources by
– Flooding with lots of packets (brute-force)
– DDoS: flood with packets from many sources
– Amplification: Abuse patsies who will amplify your

traffic for you

DoS & Networks

•  How could you DoS a target’s Internet access?
–  Send a zillion packets at them
–  Internet lacks isolation between traffic of different

users!
•  What resources does attacker need to pull this

off?
–  At least as much sending capacity (“bandwidth”) as

the bottleneck link of the target’s Internet connection
•  Attacker sends maximum-sized packets

–  Or: overwhelm the rate at which the bottleneck
router can process packets

•  Attacker sends minimum-sized packets!
–  (in order to maximize the packet arrival rate)

Defending Against Network DoS

•  Suppose an attacker has access to a beefy system with
high-speed Internet access (a “big pipe”).

•  They pump out packets towards the target at a very
high rate.

•  What might the target do to defend against the
onslaught?

–  Install a network filter to discard any packets that arrive with
attacker’s IP address as their source

•  E.g., drop * 66.31.1.37:* -> *:*
•  Or it can leverage any other pattern in the flooding traffic that’s not

in benign traffic
–  Attacker’s IP address = means of identifying misbehaving user

Filtering Sounds Pretty Easy …

•  … but DoS filters can be easily evaded:
–  Make traffic appear as though it’s from many hosts

•  Spoof the source address so it can’t be used to filter
–  Just pick a random 32-bit number of each packet sent

•  How does a defender filter this?
–  They don’t!
–  Best they can hope for is that operators around the world

implement anti-spoofing mechanisms (today about 75% do)

–  Use many hosts to send traffic rather than just one
•  Distributed Denial-of-Service = DDoS (“dee-doss”)
•  Requires defender to install complex filters
•  How many hosts is “enough” for the attacker?

–  Today they are very cheap to acquire … :-(

It’s Not A “Level Playing Field”

•  When defending resources from exhaustion,
need to beware of asymmetries, where
attackers can consume victim resources with
little comparable effort
–  Makes DoS easier to launch
–  Defense costs much more than attack

•  Particularly dangerous form of asymmetry:
amplification
–  Attacker leverages system’s own structure to pump

up the load they induce on a resource

Amplification: Network DoS

•  One technique for magnifying flood traffic:
leverage Internet’s broadcast functionality

Amplification: Network DoS

•  One technique for magnifying flood traffic:
leverage Internet’s broadcast functionality

•  How does an attacker exploit this?
–  Send traffic to the broadcast address and spoof it

as though the DoS victim sent it
–  All of the replies then go to the victim rather than the

attacker’s machine
–  Each attacker pkt yields dozens of flooding pkts

•  Note, this particular threat has been fixed
–  By changing the Internet standard to state routers

shouldn’t forward pkts addressed to broadcast addrs
–  Thus, attacker’s spoofs won’t make it to target subnet

smurf
attack

Amplification

•  Example of amplification: DNS lookups
–  Reply is generally much bigger than request

•  Since it includes a copy of the reply, plus answers etc.
⇒  Attacker spoofs DNS request to a patsy DNS

 server, seemingly from the target
•  Small attacker packet yields large flooding packet
•  Doesn’t increase # of packets, but total volume

•  Note #1: these examples involve blind spoofing
–  So for network-layer flooding, generally only works

for UDP-based protocols (can’t establish TCP conn.)
•  Note #2: victim doesn’t see spoofed source

addresses
–  Addresses are those of actual intermediary systems

Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment

handshake
– Goal: agree on initial sequence numbers

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here
(buffers, timers,
counters) Attacker doesn’t

even need to
send this ack

Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment

handshake
– Goal: agree on initial sequence numbers

• So a single SYN from an attacker suffices to force
the server to spend some memory

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here
(buffers, timers,
counters) Attacker doesn’t

even need to
send this ack

TCP SYN Flooding

•  Attacker targets memory rather than network
capacity

•  Every (unique) SYN that the attacker sends
burdens the target

•  What should target do when it has no more
memory for a new connection?

•  No good answer!
–  Refuse new connection?

•  Legit new users can’t access service

–  Evict old connections to make room?
•  Legit old users get kicked off

TCP SYN Flooding Defenses

•  How can the target defend itself?

•  Approach #1: make sure they have tons of
memory!

– How much is enough?
– Depends on resources attacker can bring to bear

(threat model), which might be hard to know

TCP SYN Flooding Defenses
• Approach #2: identify bad actors & refuse their

connections
– Hard because only way to identify them is based on IP

address
•  We can’t for example require them to send a password because

doing so requires we have an established connection!

– For a public Internet service, who knows which
addresses customers might come from?

– Plus: attacker can spoof addresses since they don’t
need to complete TCP 3-way handshake

• Approach #3: don’t keep state! (“SYN cookies”;
only works for spoofed SYN flooding)

SYN Flooding Defense: Idealized!

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping
state locally, send it to the client …

• Client needs to return the state in order to
established connection

Server only saves
state here

Do not save state
here; give to client

SYN Flooding Defense: Idealized!

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping
state locally, send it to the client …

• Client needs to return the state in order to
established connection

Server only saves
state here

Do not save state
here; give to client

Problem: the world isn’t so ideal!

TCP doesn’t include an easy way to
add a new <State> field like this.

Is there any way to get the same
functionality without having to
change TCP clients?

Practical Defense: SYN Cookies!

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode connection
state entirely within SYN-ACK’s sequence # y
– y = encoding of necessary state, using server secret

• When ACK of SYN-ACK arrives, server only
creates state if value of y from it agrees w/ secret

Server only creates
state here

Do not create
state here

Instead, encode it here

SYN Cookies: Discussion

•  Illustrates general strategy: rather than holding
state, encode it so that it is returned when
needed

• For SYN cookies, attacker must complete
3-way handshake in order to burden server
– Can’t use spoofed source addresses

• Note #1: strategy requires that you have
enough bits to encode all the state
– (This is just barely the case for SYN cookies)

• Note #2: if it’s expensive to generate or check
the cookie, then it’s not a win

Application-Layer DoS

•  Rather than exhausting network or memory
resources, attacker can overwhelm a
service’s processing capacity

•  There are many ways to do so, often at little
expense to attacker compared to target
(asymmetry)

The link sends a request to the web server that
requires heavy processing by its “backend
database”.

Algorithmic complexity attacks
•  Attacker can try to trigger worst-case

complexity of algorithms / data structures
•  Example: You have a hash table.

Expected time: O(1). Worst-case: O(n).
•  Attacker picks inputs that cause hash collisions.

Time per lookup: O(n).
Total time to do n operations: O(n^2).

•  Solution? Use algorithms with good worst-case
running time.
–  E.g., universal hash function guarantees that

Pr[hk(x)=hk(y)] = 1/2^b, so hash collisions will be
rare.

Application-Layer DoS

•  Rather than exhausting network or memory resources,
attacker can overwhelm a service’s processing capacity

•  There are many ways to do so, often at little expense to
attacker compared to target (asymmetry)

•  Defenses against such attacks?
•  Approach #1: Only let legit users issue expensive requests

–  Relies on being able to identify/authenticate them
–  Note: that this itself might be expensive!

•  Approach #2: Force legit users to “burn” cash
•  Approach #3: massive over-provisioning ($$$)

DoS Defense in General Terms
•  Defending against program flaws requires:

–  Careful design and coding/testing/review
–  Consideration of behavior of defense mechanisms

•  E.g. buffer overflow detector that when triggered halts
execution to prevent code injection ⇒ denial-of-service

•  Defending resources from exhaustion can be
really hard. Requires:
–  Isolation and scheduling mechanisms

•  Keep adversary’s consumption from affecting others
–  Reliable identification of different users

