
Firewalls

CS 161: Computer Security
Prof. David Wagner

March 7, 2013

Controlling Networks … On The Cheap
•  Motivation: How do you harden a set of systems against

external attack?
–  Key Observation:

•  The more network services your machines run, the greater the risk
–  Due to larger attack surface

•  One approach: on each system, turn off unnecessary
network services
–  But you have to know all the services that are running
–  And sometimes some trusted remote users still require access

Controlling Networks … On The Cheap
•  Motivation: How do you harden a set of systems against

external attack?
–  Key Observation:

•  The more network services your machines run, the greater the risk
–  Due to larger attack surface

•  One approach: on each system, turn off unnecessary
network services
–  But you have to know all the services that are running
–  And sometimes some trusted remote users still require access

•  Plus key question of scaling
–  What happens when you have to secure 100s/1000s of systems?
–  Which may have different OSs, hardware & users …
–  Which may in fact not all even be identified …

Taming Management Complexity
•  Possibly more scalable defense: Reduce risk by

blocking in the network outsiders from having
unwanted access your network services
–  Interpose a firewall the traffic to/from the outside must

traverse
–  Chokepoint can cover thousands of hosts

•  Where in everyday experience do we see such chokepoints?

Internet Internal
Network

Selecting a Security Policy
•  Firewall enforces an (access control) policy:

–  Who is allowed to talk to whom, accessing what service?

•  Distinguish between inbound & outbound connections
–  Inbound: attempts by external users to connect to services on

internal machines
–  Outbound: internal users to external services
–  Why? Because fits with a common threat model. There are

thousands of internal users (and we’ve vetted them). There are
billions of outsiders.

•  Conceptually simple access control policy:
–  Permit inside users to connect to any service
–  External users restricted:

•  Permit connections to services meant to be externally visible
•  Deny connections to services not meant for external access

How To Treat Traffic Not Mentioned in Policy?

•  Default Allow: start off permitting external
access to services
– Shut them off as problems recognized

How To Treat Traffic Not Mentioned in Policy?

•  Default Allow: start off permitting external
access to services
– Shut them off as problems recognized

•  Default Deny: start off permitting just a
few known, well-secured services
– Add more when users complain (and mgt.

approves)

How To Treat Traffic Not Mentioned in Policy?

•  Default Allow: start off permitting external
access to services
– Shut them off as problems recognized

•  Default Deny: start off permitting just a
few known, well-secured services
– Add more when users complain (and mgt.

approves)
•  Pros & Cons?

–  Flexibility vs. conservative design
–  Flaws in Default Deny get noticed more quickly / less

painfully

In general, use Default Deny

✓

Stateful Packet Filter
•  Stateful packet filter is a router that checks each

packet against security rules and decides to forward
or drop it
–  Firewall keeps track of all connections (inbound/outbound)
–  Each rule specifies which connections are allowed/denied

(access control policy)
–  A packet is forwarded if it is part of an allowed connection

Internet Internal
Network

Example Rule

allow	 tcp	 connection	 4.5.5.4:*	 -‐>	 3.1.1.2:80

•  Firewall should permit TCP connection that’s:
–  Initiated by host with Internet address 4.5.5.4 and
– Connecting to port 80 of host with IP address 3.1.1.2	

•  Firewall should permit any packet associated with
this connection

•  Thus, firewall keeps a table of (allowed) active
connections. When firewall sees a packet, it checks
whether it is part of one of those active connections.
If yes, forward it; if no, drop it.

Example Rule

allow	 tcp	 connection	 *:*/in	 -‐>	 3.1.1.2:80/out

•  Firewall should permit TCP connection that’s:
–  Initiated by host with any internal host and
– Connecting to port 80 of host with IP address 3.1.1.2 on

external Internet	
•  Firewall should permit any packet associated with

this connection

•  The /in indicates the network interface.

Example Ruleset

allow	 tcp	 connection	 *:*/in	 -‐>	 *:*/out	
allow	 tcp	 connection	 *:*/out	 -‐>	 1.2.2.3:80/in

•  Firewall should permit outbound TCP connections
(i.e., those that are initiated by internal hosts)	

•  Firewall should permit inbound TCP connection to our
public webserver at IP address 1.2.2.3

Other Kinds of Firewalls
•  Stateless packet filter

– No state in the packet filter. Rules specify
whether to drop packet, without history.

– Problem: requires hacks to handle TCP
connections (e.g., an inbound packet is OK if it is
associated with a TCP connection initiated by an
inside host to an outside host).

•  Application-level firewall
– Firewall acts as a proxy. TCP connection from

client to firewall, which then makes a second TCP
connection from firewall to server.

– Only modest benefits over stateful packet filter.

Secure External Access to Inside Machines

•  Often need to provide secure remote access to a
network protected by a firewall
–  Remote access, telecommuting, branch offices, …

•  Create secure channel (Virtual Private Network, or VPN)
to tunnel traffic from outside host/network to inside
network
–  Provides Authentication, Confidentiality, Integrity
–  However, also raises perimeter issues
 (Try it yourself at http://www.net.berkeley.edu/vpn/)

Internet Company

Yahoo

User
VPN server

Fileserver

Why Have Firewalls Been
Successful?

•  Central control – easy administration and update
–  Single point of control: update one config to change

security policies
–  Potentially allows rapid response

•  Easy to deploy – transparent to end users
–  Easy incremental/total deployment to protect 1000’s

•  Addresses an important problem
–  Security vulnerabilities in network services are rampant
–  Easier to use firewall than to directly secure code …

Firewall Disadvantages?
Discussion question:

What are the limitations of firewalls?
Why have firewalls become less effective over time?

Discuss with a partner.

Firewall Disadvantages?
•  Functionality loss – less connectivity, less risk

–  May reduce network’s usefulness
–  Some applications don’t work with firewalls

•  Two peer-to-peer users behind different firewalls

•  The malicious insider problem
–  Assume insiders are trusted

•  Malicious insider (or anyone gaining control of internal machine) can
wreak havoc

•  Firewalls establish a security perimeter
–  Like Eskimo Pies: “hard crunchy exterior, soft creamy

center”
–  Threat from travelers with laptops, cell phones, …

Takeaways on Firewalls
•  Firewalls: Reference monitors and access

control all over again, but at the network level
•  Attack surface reduction
•  Centralized control

Detecting Attacks

CS 161: Computer Security
Prof. David Wagner

March 7, 2013

Approaches to Security
•  Prevent, Detect and respond, Deter, Tolerate
•  Detection might enable…

–  Recovery: if I know my machine is infected, I can recover
(nuke it from orbit and re-install)

–  Risk management: if I can measure prevalence of different attacks,
I can prioritize spending on different defenses wisely

–  Deterrence: if I can detect the attack and attribute the source,
maybe we can punish/prosecute the attacker – deterring others in
the future

•  If we can detect an attack, why not just block it when you
detect it?
–  False alarms: detector might occasionally make false positives, and

it’d be costly to block legitimate activity
–  After-the-fact response: might be easier to detect attack later than to

detect attack in real time

The Problem of Detecting Attacks
•  Given a choice, we’d like our systems to be airtight-secure
•  But often we don’t have that choice

–  #1 reason why not: cost (in different dimensions)
•  A (messy) alternative: detect misuse rather than build a

system that can’t be misused
–  Upon detection: clean up damage, maybe block incipient “intrusion”
–  Note: can be prudent for us to do this even if we think system is

solid – defense in depth
–  Note: “misuse” might be about policy rather than security

•  Example: your own employees shouldn’t be using file-sharing apps

•  Problem space:
–  Lacks principles
–  Has many dimensions (where to monitor, how to look for problems,

how much accuracy required, what can attackers due to elude us)
–  Is messy and in practice also very useful

Example Scenario
•  Suppose you’ve been hired to provide computer

security for FooCorp. They offer web-based
services via backend programs invoked via URLs:
–  http://foocorp.com/amazeme.exe?profile=info/luser.txt
–  Script makes sure that “profile” argument is a relative

filename

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

4. amazeme.exe?
profile=xxx

5. bin/amazeme -p xxx 0. http://foocorp/amazeme.exe?profile=xxx
1. GET /amazeme.exe?profile=xxx

3. GET /amazeme.exe?profile=xxx

2. GET /amazeme.exe?profile=xxx

Structure of
FooCorp Web Services

Internet

Remote client

FooCorp’s
border router

FooCorp
Servers

Front-end web server

5. bin/amazeme -p xxx

7. 200 OK
 Output of bin/amazeme

6. Output of bin/amazeme sent back

8. 200 OK
 Output of bin/amazeme

9. 200 OK
 Output of bin/amazeme

10. Browser renders output

Example Scenario
•  Suppose you’ve been hired to provide computer

security for FooCorp. They offer web-based
services via backend programs invoked via URLs:
–  http://foocorp.com/amazeme.exe?profile=info/luser.txt
–  Script makes sure that “profile” argument is a relative

filename
•  Due to installed base issues, you can’t alter

backend components like amazeme.exe
•  One of the zillion of attacks you’re worried about is

information leakage via directory traversal:
–  E.g. GET /amazeme.exe?profile=../../../../../etc/passwd

Helpful error message
returns contents of
profile that appeared
mis-formed, revealing
the raw password file

Example Scenario
•  Suppose you’ve been hired to provide computer

security for FooCorp. They offer web-based
services via backend programs invoked via URLs:
–  http://foocorp.com/amazeme.exe?profile=info/luser.txt
–  Script makes sure that “profile” argument is a relative

filename
•  Due to installed base issues, you can’t alter

backend components like amazeme.exe
•  One of the zillion of attacks you’re worried about is

information leakage via directory traversal:
–  E.g. GET /amazeme.exe?profile=../../../../../etc/passwd

•  What different approaches could detect this attack?

Extra Materials

Subverting Firewalls!
• Along with possible bugs, packet filters have a

fundamentally limited semantic model
–  They lack a full understanding of the meaning of the

traffic they carry
o  In part because operate only at layers 3 & 4; not 7

• How can a local user who wants to get around
their site’s firewall exploit this?
–  (Note: we’re not talking about how an external attacker

can escape a firewall’s restrictions)

• One method of subversion: abuse ports
–  Who says that e.g. port 22/tcp = SSH?

o Why couldn’t it be say Skype or BitTorrent?
o  Just requires that client & server agree on app protocol

Hiding on Other Ports!
• Method #1: use port allocated to another service

(how can this be detected?)
• Method #2: tunneling

–  Encapsulate one protocol inside another
–  Receiver of “outer” protocol decapsulates interior

tunneled protocol to recover it
–  Pretty much any protocol can be tunneled over another

(with enough effort)

• E.g., tunneling IP over SMTP
–  Just need a way to code an IP datagram as an email

message (either mail body or just headers)

Example: Tunneling IP over Email!
From: doesnt-matter@bogus.com!
To: my-buddy@tunnel-decapsulators.R.us!
Subject: Here’s my IP datagram!
!
IP-header-version: 4!
IP-header-len: 5!
IP-ID: 11234!
IP-src: 1.2.3.4!
IP-dst: 5.6.7.8!
IP-payload: 0xa144bf2c0102…!

Remote email server receives this legal email, builds an IP
packet corresponding to description in email body …
… and injects it into the network
How can a firewall detect this??

This operator of this
email server has
chosen to cooperate
with the email sender
to help them tunnel

Tunneling, cont.!
• E.g., IP-over-ICMP:

– Embed IP datagram as the payload of a “ping” packet

• E.g., Skype-over-HTTP:
– Encode Skype messages in URL of requests and header

fields of replies

• Note #1: to tunnel, the sender and receiver must
both cooperate (so it’s not useful for initial attacks)

• Note #2: tunneling has many legitimate uses too
– E.g., Virtual Private Networks (VPNs)

o Make a remote machine look like it’s local to its home network
o  Tunnel encrypts traffic for privacy & to prevent meddling

Application-level Firewall!
• Can more directly control applications by requiring

them to go through a proxy for external access
– Proxy doesn’t simply forward, but acts as an application-

level middleman

• Example: SSH gateway
– Require all SSH in/out of site to go through gateway
– Gateway logs authentication, inspects decrypted text
– Site’s firewall configured to prohibit any other SSH

access

SSH Gateway Example!

host-to-gateway"
SSH session"

gateway-to-remote "
host SSH session"

application
gateway

Firewall"
"
allow  
 <port=22, 
 host=1.3.5.7>"
!
drop <port=22>"

1.3.5.7

Application-level Firewall!
• Can more directly control applications by requiring

them to go through a proxy for external access
– Proxy doesn’t simply forward, but acts as an application-

level middleman

• Example: SSH gateway
– Require all SSH in/out of site to go through gateway
– Gateway logs authentication, inspects decrypted text
– Site’s firewall configured to prohibit any other SSH

access

• Provides a powerful degree of monitoring/control
• Costs?

– Need to run extra server(s) per app (possible bottleneck)
– Each server requires careful hardening

FW Disadvantages, con’t
•  “Malicious” applications

– Previous properties combine in a very nasty
way: app protocol blocked by users’ firewalls

•  What to do?
– Tunnel app’s connections over HTTP or SMTP
– Web is killer app, so most firewalls allow it
– Now firewall can’t distinguish real/app traffic
–  Insiders trusted ⇒ their apps trusted ⇒ firewall

can’t protect against malicious apps
– More and more traffic goes over port 25/80/…

•  Firewalls have less visibility into traffic
•  Firewalls become less effective

Security Principle: Reference Monitors

•  Firewalls embody useful principles that are
applicable elsewhere in computer security
–  Optimized for enforcing particular kind of access

control policy
–  Chokepoint notion makes enforcement possible

•  A key conceptual approach to access control:
reference monitor
–  Examines every request to access a controlled

resource (an object) and determines whether to
allow request

Reference
Monitor Subject Object

Request

Reference Monitor Security Properties

•  Always invoked
–  Complete mediation property: all security-relevant

operations must be mediated by RM
–  RM should be invoked on every operation controlled by

access control policy
•  Tamper-resistant

–  Maintain RM integrity (no code/state tampering)
•  Verifiable

–  Can verify RM operation (correctly enforces desired
access control policy)

•  Requires extremely simple RM
•  We find we can’t verify correctness for systems with any

appreciable degree of complexity

Considering Firewalls as
Reference Monitors

• Always invoked?
–  Place Packet Filter as an in-path

element on chokepoint link for all
internal-external communications

–  Packets only forwarded across link if
firewall explicitly decides to do so
after inspection

Potential Problems?

•  What if a user hooks up an unsecured wireless
access point to their internal machine?

•  Anyone who drives by with wireless-enabled
laptop can gain access to internal network
–  Bypasses packet filter!

•  To use a firewall safely, must ensure we’ve
covered all links between internal and external
networks with firewalls
–  Set of links known as the security perimeter

RM Property: Tamper-Resistant

•  Will this hold?

•  Do not allow management access to
firewall other than from specific hosts
–  I.e., firewall itself needs firewalling

•  Protect firewall’s physical security
•  Must also secure storage & propagation

of configuration data

RM Property: Verifiable

•  Will this hold?
•  Current practice:

–  Packet filter software too complex for feasible
systematic verification …

–  … and rulesets with 1,000s (!) of rules
•  Result:

–  Bugs that allowed attackers to defeat intended
security policy by sending unexpected packets
that packet filter doesn’t handle as desired

Stateless Packet Filters
•  Basic kind of firewall: stateless packet filter

– Router with list of access control rules
– Router checks each received packet against

security rules to decide to forward or drop it
– Each rule specifies which packets it applies to

based on a packet’s header fields (stateless)
•  Specify source and destination IP addresses, port

numbers, and protocol names, or wild cards
•  Each rule specifies the action for matching packets:

ALLOW or DROP (aka DENY)
<ACTION> <PROTO> <SRC:PORT> -> <DST:PORT>

– First listed rule has precedence

Examples of Packet Filter Rules

allow	 tcp	 4.5.5.4:1025	 -‐>	 3.1.1.2:80

•  States that the firewall should permit any TCP packet
that’s:

–  from Internet address 4.5.5.4 and
–  using a source port of 1025 and
–  destined to port 80 of Internet address 3.1.1.2	

deny	 tcp	 4.5.5.4:*	 -‐>	 3.1.1.2:80

•  States that the firewall should drop any TCP packet
like the above, regardless of source port

Examples of Packet Filter Rules

deny	 tcp	 4.5.5.4:*	 -‐>	 3.1.1.2:80	
allow	 tcp	 4.5.5.4:1025	 -‐>	 3.1.1.2:80

•  In this order, the rules won’t allow any TCP packets
from 4.5.5.4 to port 80 of 3.1.1.2	

allow	 tcp	 4.5.5.4:1025	 -‐>	 3.1.1.2:80
deny	 tcp	 4.5.5.4:*	 -‐>	 3.1.1.2:80

•  In this order, the rules allow TCP packets from 4.5.5.4
to port 80 of 3.1.1.2 only if they come from source
port 1025

Expressing Policy with Rulesets
•  Goal: prevent external access to Windows

SMB (TCP port 445)
– Except for one special external host, 8.4.4.1

•  Ruleset:
allow	 tcp	 8.4.4.1:*	 -‐>	 *:445
drop	 	 tcp	 *:*	 -‐>	 *:445	
allow	 	 *	 	 *:*	 -‐>	 *:*

•  Problems?
– No notion of inbound vs outbound connections

•  Drops outbound SMB connections from inside users
–  (This is a default-allow policy!)

•  Want to allow:
–  Inbound mail connections to our mail server (1.2.3.4:25)
–  All outbound connections from our network, 1.2.3.0/24

•  1.2.3/24 = “any address for which the top 24 bits match 1.2.3.0”
•  So it ranges from 1.2.3.0,	 1.2.3.1,	 …,	 1.2.3.255

–  Nothing else
•  Consider this ruleset:

allow	 tcp	 *:*	 -‐>	 1.2.3.4:25	
allow	 tcp	 1.2.3.0/24:*	 -‐>	 *:*	
drop	 	 	 *	 	 *:*	 -‐>	 *:*

•  This policy doesn't work …
–  TCP connections are bidirectional
–  3-way handshake: client sends SYN, receives SYN+ACK, sends ACK	

•  Followed by either/both sides sending DATA (w/ ACK bit set)

Expressing Policy with Rulesets

Problem: Outbound Connections Fail

1. allow	 tcp	 *:*	 -‐>	 1.2.3.4:25	
2. allow	 tcp	 1.2.3.0/24:*	 -‐>	 *:*	
3. drop	 	 	 *	 	 *:*	 -‐>	 *:*

• Inside host opens TCP connection to port
80 on external machine:
– Initial SYN packet passed through by rule 2
– SYN+ACK packet coming back is dropped

• Fails rule 1 (not destined for port 25)
• Fails rule 2 (source not inside host)
• Matches rule 3 ⇒ DROP

Problem: Outbound Connections Fail
1. allow	 tcp	 *:*	 -‐>	 1.2.3.4:25	
2. allow	 tcp	 1.2.3.0/24:*	 -‐>	 *:*	
3. drop	 	 	 *	 	 *:*	 -‐>	 *:*

• Fix?
–  In general, we need to distinguish between 2 kinds of

inbound packets
• Allow inbound packets associated with an outbound connection
• Restrict inbound packets associated with an inbound connection

–  How do we tell them apart?
• Approach #1: remember previous outbound connections

–  Requires state :-‐(
• Approach #2: leverage details of how TCP works …

Inbound vs. Outbound Connections
• Key TCP feature: ACK bit set on all packets

except first
–  Plus: TCP receiver disregards packets with ACK set

if they don’t belong to an existing connection
• Solution ruleset:

1. allow	 tcp	 *:*	 -‐>	 1.2.3.4:25	 	 	 	 	
2. allow	 tcp	 1.2.3.0/24:*	 -‐>	 *:*	 	
3. allow	 tcp	 *:*	 -‐>	 1.2.3.0/24:*	 only	 if	 ACK	 bit	 set	
4. drop	 	 	 *	 	 *:*	 -‐>	 *:*	
– Rules 1 and 2 allow traffic in either direction for

inbound connections to port 25 on machine 1.2.3.4
– Rules 2 and 3 allow outbound connections to any port

How This Ruleset Protects
1. allow	 tcp	 *:*	 -‐>	 1.2.3.4:25	 	 	 	 	
2. allow	 tcp	 1.2.3.0/24:*	 -‐>	 *:*	 	
3. allow	 tcp	 *:*	 -‐>	 1.2.3.0/24:*	 only	 if	 ACK	 bit	 set	
4. drop	 	 	 *	 	 *:*	 -‐>	 *:*

•  Suppose external attacker tries to exploit vulnerability in SMB
(TCP port 445):

= Attempts to open an inbound TCP connection to internal SMB server

•  Attempt #1: Sends SYN packet to server
– Packet lacks ACK bit ⇒ no match to Rules 1-3, dropped by Rule 4

•  Attempt #2: Sends SYN+ACK packet to server
–  Firewall permits the packet due to Rule 3
– But then dropped by server’s TCP stack (since ACK bit set, but isn’t

part of existing connection)

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

IP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Data

TCP Header

