
TLS and DNSSEC wrap-up

CS 161: Computer Security
Prof. David Wagner

April 14, 2013

www.google.com A?

 www.google.com. A 6.6.6.6
Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

www.google.com A?

 www.google.com. A 6.6.6.6
Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

Resolver observes that the reply didn’t
include a signature, rejects it as insecure

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

(1) If resolver didn’t receive a signature
from .com for evil.com’s key, then it
can’t validate this signature & ignores
reply since it’s not properly signed …

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

(2) If resolver did receive a signature from .com
for evil.com’s key, then it knows the key is for
evil.com and not google.com … and ignores it

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 google.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 google.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC – Mallory attacks!

If signature actually comes from google.com’s key,
resolver will believe it …
… but no such signature should exist unless either:
(1) google.com intended to sign the RR, or
(2) google.com’s private key was compromised

Issues With DNSSEC ?

•  Issue #1: Replies are Big
–  E.g., “dig	 +dnssec	 berkeley.edu” can return 2100+ B
–  DoS amplification
–  Increased latency on low-capacity links
–  Headaches w/ older libraries that assume replies < 512B

•  Issue #2: Partial deployment

–  Suppose .com not signing, though google.com is
–  Major practical concern. What do we do?
–  Can wire additional key into resolver (doesn’t scale)
–  Or: outsource to trusted third party (“lookaside”)

•  Wire their key into resolver, they sign numerous early adopters

Issues With DNSSEC, cont.
•  Issue #1: Partial deployment

–  Suppose .com not signing, though google.com is. Or,
suppose .com and google.com are signing, but cnn.com
isn’t. Major practical concern. What do we do?

–  What do you do with unsigned/unvalidated results?
–  If you trust them, weakens incentive to upgrade

(man-in-the-middle attacker can defeat security even for
google.com, by sending forged but unsigned response)

–  If you don’t trust them, a whole lot of things break

Issues With DNSSEC, cont.
•  Issue #2: Negative results (“no such name”)

–  What statement does the nameserver sign?
–  If “gabluph.google.com” doesn’t exist, then have to do

dynamic key-signing (expensive) for any bogus request
–  Instead, sign (off-line) statements about order of names

•  E.g., sign “gabby.google.com is followed by gabrunk.google.com”
•  Thus, can see that gabluph.google.com can’t exist

–  But: now attacker can enumerate all names that exist :-(

Issues With DNSSEC, cont.
•  Issue #3: Whom do you really trust?

–  For your laptop (say), who does all the “grunt work” of
fetching keys & validating DNSSEC signatures?

•  Your laptop’s local resolver?
–  … which you acquire via DHCP in your local coffeeshop
–  I.e., exactly the most-feared potentially untrustworthy

part of the DNS resolution process!

•  Alternatives?
⇒  Your laptop needs to do all the validation work itself :-(

TLS/SSL Trust Issues
•  “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money.”
–  Matt Blaze, circa 2001

•  … and there are lots of CAs, and we must trust
them all.

•  Of course, it’s not just their greed that matters …

This appears to be a
fully valid cert using
normal browser
validation rules.

Only detected by
Chrome due to its
recent introduction of
cert “pinning” –
requiring that certs
for certain domains
must be signed by
specific CAs rather
than any generally
trusted CA

TLS/SSL Trust Issues
•  “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money.”
–  Matt Blaze, circa 2001

•  … and there are lots of CAs, and we must trust
them all.

•  Of course, it’s not just their greed that matters …
•  … and it’s not just their diligence & security that

matters …
–  “A decade ago, I observed that commercial certificate

authorities protect you from anyone from whom they are
unwilling to take money. That turns out to be wrong; they
don't even do that much.” - Matt Blaze, circa 2010

Note: the cert is “forged” in the sense
that it doesn’t really belong to Gmail,
PayPal, or whomever. But it does not
appear forged because it includes a
legitimate signature from a trusted CA.

Summary of TLS & DNSSEC Technologies
•  TLS: provides channel security (for communication over TCP)

–  Confidentiality, integrity, authentication
–  Client & server agree on crypto, session keys
–  Underlying security dependent on:

•  Trust in Certificate Authorities / decisions to sign keys
•  (as well as implementors)

•  DNSSEC: provides object security (for DNS results)
–  Just integrity & authentication, not confidentiality
–  No client/server setup “dialog”
–  Tailored to be caching-friendly
–  Underlying security dependent on trust in Root Name Server’s

key, and all other signing keys

Tamper-Evident Logging
•  We work for the police Electronic Records office.
•  To ensure that evidence can’t be questioned in

court, we want to make sure that evidence can’t be
tampered with, after it is logged with the office.

•  In other words: a police officer can log an
electronic file at any time; after it is logged, no
back-dating or after-the-fact changes to evidence
should be possible.

•  How should we do it? What crypto or data
structures could we use?

Design Problem for You
•  Idea: Each day, collect all the files (f1, f2, …, fn) that

are logged that day. Then, publish something in
the next day’s newspaper, to commit to these files.

•  Question: What should we publish?
Needs to be short, and ensure after-the-fact
changes or backdating are detectable.

•  When a file fi is exhibited into evidence in a trial,
how can judge verify it hasn’t been modified post-
facto?

Your Solution

•  Store in database: f1, Sign(f1), f2, Sign(f2), …,
fn, Sign(fn)

•  Publish: public key
•  To verify fi : reveal f1, Sign(fi)

•  Critique: Sysadmin can get a copy of the
private key, modify database, update the
signature, and thus modify old entries or
create new backdated entries.

Your Solution

•  Publish: H(f1, f2, …, fn)
•  To verify fi : reveal f1, f2, …, fn

Solution
•  Each day, collect all the files (f1, f2, …, fn) that are

logged that day. Then, publish H(f1, f2, …, fn) in the
next day’s newspaper, to commit to these files.

•  When a file fi is exhibited into evidence in a trial,
reveal f1, f2, …, fn to judge. Judge can hash them,
check that their hash was in the right day’s
newspaper, and check that fi is in the list.

Better Solution
•  Each day, collect all the files (f1, f2, …, fn) that are

logged that day. Let f0 be the previous day’s hash.
Publish H(f0, f1, f2, …, fn) in the next day’s
newspaper, to commit to these files.

•  Note that exhibiting file fi into evidence still requires
revealing entire list of other files (f1, f2, …, fn) that
were logged that day. Can you think of any way to
avoid that?

Take-away
•  Using hash chaining, we can provide tamper-

evident audit logs that let us detect after-the-fact
modifications and backdated entries.

