
Bitcoin,
Security for Cloud & Big Data

CS 161: Computer Security
Prof. David Wagner

April 18, 2013

Bitcoin
•  Public, distributed, peer-to-peer, hash-chained

audit log of all transactions (“block chain”).
•  Mining: Each entry in block chain must come with a

proof of work (its hash value ends in k zeros).
Thus, appending takes computation.

•  Lottery: First to successfully append to block chain
gets a small reward (if append is accepted by
others). This creates new money. Each block
contains a list of transactions, and identify of miner
(who receives the reward).

•  Consensus: If there are multiple versions of the
block chain, longest one wins.

Bitcoin
•  Transactions: If Alice wants to give $10 to Bob, she

signs this transaction. She gives the signed
transaction to all miners and asks them to include it
in the block they’re trying to append to the chain.

•  Honest miners check integrity of block chain
entries and try to append to the latest, longest valid
version of block chain.

•  Bob knows he has received $10 once this
transaction appears in the consensus block chain.

Consensus
•  Can Mallory fork the block chain?
•  Say she buys Bob’s from him for $10,000 in

Bitcoins. Then, she goes back in time and,
starting from the block chain just before this
transaction was added to it, she starts appending
new entries from there. Can she get others to
accept this forked chain, so she gets her $10,000
back?

 pay Bob $10k

Consensus
•  Can Mallory fork the block chain?
•  Answer: No, not unless she has ≥51% of the

computing power in the world. Longest chain wins,
and her forked one will be shorter (unless she can
mine new entries faster than aggregate mining
power of everyone else in the world).

pay Bob $10k

How Bitcoin Addresses Criticisms
of Naïve Scheme

•  Initial balance is arbitrary: in Bitcoin, initial
balances are zero

•  Broadcasting is expensive and doesn’t scale:
gossip protocol

•  A conspiracy of n/2 malicious computers can fork
the audit log and steal all the money: they’d have
to own 51% of all the computing power in the
Bitcoin world

•  Sybil attacks: Anyone can set up millions of servers
and thus have a 50% majority: they’d have to own
51% of all the computing power in the Bitcoin world

Discussion
•  How can Alice turn dollars into bitcoins, or vice

versa?
•  Is Bitcoin anonymous?
•  Should I think of Bitcoin as a short-term currency or

as a long-term investment?
•  Is it ethical to build a system that relies upon

wasting CPU cycles (and thus energy)?

BitCoin Take-away
•  Crypto tools allow for sophisticated solutions to

integrity and trust in peer-to-peer systems

Big Data in the Cloud
Trends in computing:
•  “Big data”: Easy to collect lots and lots of data

about us
•  “Cloud computing”: Cheaper to store data in the

cloud, and do computation there

What are the security and privacy implications of
these trends?

Big Data in the Cloud
Trends in computing:
•  “Big data”: Easy to collect lots and lots of data

about us
•  “Cloud computing”: Cheaper to store data in the

cloud, and do computation there

What are the security and privacy implications of
these trends?
•  Privacy – companies know a lot about us
•  Data security – a security breach exposes all our

data

Potential Solutions
Some possible ways to mitigate the threat:
•  Policy: Minimize data collection or retention, limit

who can access stored data or for what purposes
•  Technology: Encrypt data while it is stored on

cloud servers

Potential Solutions
Some possible ways to mitigate the threat:
•  Policy: Minimize data collection or retention, limit

who can access stored data or for what purposes
•  Technology: Encrypt data while it is stored on

cloud servers – but then how can they do any
useful computation on our data?

Case Study: DropBox
•  DropBox lets you store your files in the cloud.
•  For efficiency reasons, if Alice and Bob have the

same file (pharrell_williams_happy.mp3), DropBox
doesn’t want to store it twice.

•  For security reasons, it’d be nice if DropBox could
encrypt your files on your computer (with a key
only you know) and upload the encrypted version.

•  But if we encrypt the same file twice, we get two
different ciphertexts.

Case Study: DropBox
•  DropBox lets you store your files in the cloud.
•  For efficiency reasons, if Alice and Bob have the

same file (pharrell_williams_happy.mp3), DropBox
doesn’t want to store it twice.

•  For security reasons, it’d be nice if DropBox could
encrypt your files on your computer (with a key
only you know) and upload the encrypted version.

•  But if we encrypt the same file twice, we get two
different ciphertexts.

•  How does DropBox do de-duplication on encrypted
files?

DropBox’s Solution
•  What DropBox actually does:

–  To upload file x, send SHA256(x) to DropBox.
If it’s not a duplicate, send x to DropBox over SSL, and
they’ll encrypt it using a fixed key k (same for all users)
and store Ek(x) on their servers.

•  Problems:
–  DropBox has k so can decrypt all your data.
–  A bug or security breach in DropBox can expose all your

data.
–  In fact, on 6/19/2011, DropBox did have a bad bug,

where they screwed up the authentication: you could log
into someone else’s account without knowing their
password (just enter any password, and you’re in). This
exposed everyone’s files to the world.

Better Solution for DropBox?
•  A natural attempt at a better solution:

To upload file x, send to DropBox
 Ek(x), SHA256(x)
where k is your personal key.

•  This does let DropBox detect duplicates, but it has
a problem.
–  Say Alice uploads file x (encrypted under her key k1),

then Bob uploads the same file x (encrypted under his
key k2). DropBox can detect it’s a duplicate, since it has
the same hash. However, the copy on DropBox’s
servers is encrypted under Alice’s key k1, so Bob won’t
later be able to decrypt.

A Better Solution for DropBox
•  Better solution: “Convergent” encryption. Upload

 C = AES-CBCk(x),
where k = SHA256(x) and IV = 0. Also upload an
encryption of k under your personal key.

•  Now encrypting the same file twice gives the same
ciphertext C, so C only needs to be stored once.
–  C is a deterministic function of x, so if Alice and Bob

upload the same file x, DropBox only has to store C
once. DropBox does store encryption of k under Alice’s
key and under Bob’s key, but both of those are short.

•  This is what DropBox should have done.

•  What’s the potential weakness of this?

Case Study: Encrypted Email
•  My email is stored in the cloud on a server.
•  For security reasons, I want it to be stored in

encrypted form, so I don’t have to trust the server.
•  But I also want to be able to do keyword search on

all my email.

Case Study: Encrypted Email
•  My email is stored in the cloud on a server.
•  For security reasons, I want it to be stored in

encrypted form, so I don’t have to trust the server.
•  But I also want to be able to do keyword search on

all my email.
•  How can I search on encrypted email?

Solution for Encrypted Email
•  One solution: Each word w is encrypted separately

and deterministically:
 Ek(w) = AES-CBCk(w) where IV = SHA256(w)

•  Advantage: Keyword searches just work, as long
as I encrypt the keyword I’m searching on.
Problem: This leaks a lot of data about my email.

Solution for Encrypted Email
•  One solution: Each word w is encrypted separately

and deterministically:
 Ek(w) = AES-CBCk(w) where IV = SHA256(w)

•  Advantage: Keyword searches just work, as long
as I encrypt the keyword I’m searching on.
Problem: This leaks a lot of data about my email.

•  More secure solution: For each word w, store
 r, SHA256(r, Ek(w))
where r is random and different each time, and
Ek(w) is deterministic encryption as above.

•  To search for word w, send x = Ek(w) to server.
For each r, y on the server, server can test whether
SHA256(r, x)=y.

Match-making
•  Alice and Bob are cryptographers and want to find

out if they’re interested in each other romantically,
but neither wants to suffer possible rejection.

•  Can we build a match-making service where they
both get notified if they’re both interested in each
other, but otherwise they learn nothing?

Match-making
•  Alice and Bob are cryptographers and want to find

out if they’re interested in each other romantically,
but neither wants to suffer possible rejection.

•  Can we build a match-making service where they
both get notified if they’re both interested in each
other, but otherwise they learn nothing?

•  Solution: Use a trusted server S. Alice sends x to
S, where x = 1 if she is interested in Bob or 0 if not.
Bob sends y to S. S computes z = x ∧ y and
sends z to both Alice and Bob.

Match-making
•  Alice and Bob are cryptographers and want to find

out if they’re interested in each other romantically,
but neither wants to suffer possible rejection.

•  Can we build a match-making service where they
both get notified if they’re both interested in each
other, but otherwise they learn nothing?

•  Solution: Use a trusted server S. Alice sends x to
S, where x = 1 if she is interested in Bob or 0 if not.
Bob sends y to S. S computes z = x ∧ y and
sends z to both Alice and Bob.

•  Can Alice and Bob do this on their own without
trusting any server?

