March 31 & April 1, 2015

Question 1 Cross Site Request Forgery (CSRF) (10 min)
In a CSRF attack, a malicious user is able to take action on behalf of the victim. Consider
the following example. Mallory posts the following in a comment on a chat forum:

Of course, Patsy-Bank won’t let just anyone request a transaction on behalf of any given
account name. Users first need to authenticate with a password. However, once a user
has authenticated, Patsy-Bank associates their session ID with an authenticated session
state.

(a) Explain what could happen when Victim Vern visits the chat forum and views
 Mallory’s comment.

(b) What are possible defenses against this attack?

Question 2 Session Fixation (15 min)
Some web application frameworks allow cookies to be set by the URL. For example,
visiting the URL

 http://foobar.edu/page.html?sessionid=42.

will result in the server setting the sessionid cookie to the value “42”.

(a) Can you spot an attack on this scheme?

(b) Suppose the problem you spotted has been fixed as follows. foobar.edu now es-
 tablishes new sessions with session IDs based on a hash of the tuple (username,
 time of connection). Is this secure? If not, what would be a better approach?

Question 3 Encryption Modes (15 min)
Consider the following encryption mode for applying AES-128 with a key K to a message
M that consists of l 128-bit blocks M_1,\ldots,M_l. The sender first picks a random 128-bit
string, C_0, which is the first block of the ciphertext. Then for $i > 0$, the i^{th} ciphertext
block is given by $C_i = C_{i-1} \oplus \text{AES-128}_K(M_i)$. The ciphertext is the concatenation
of these individual blocks: $C = C_0 \parallel C_1 \parallel C_2 \parallel \ldots \parallel C_l$.

(a) What is the intent behind the random value C_0? (I.e., what is it meant to achieve.)

(b) Is this mode of encryption secure? If so, state what the desirable properties it has
 that make it secure. If not, sketch a weakness.
(c) Suppose we replace the computation of C_i with $C_i = \text{AES}-128_k(C_{i-1} \oplus M_i)$. Does this make the mode of encryption more secure, less secure, or unchanged? Briefly explain your answer.