
Dawn Song

 Web Security: Vulnerabilities & Attacks

Computer Security Course. Dawn Song

Dawn Song

Cross-site Request Forgery

Dawn Song

Example Application

Consider a social networking site, GraceBook, that
allows users to ‘share’ happenings from around the
web. Users can click the “Share with GraceBook”
button which publishes content to GraceBook.
When users press the share button, a POST request
to http://www.gracebook.com/share.php is made
and gracebook.com makes the necessary updates on
the server.

http://www.gracebook.com/share.php

Dawn Song

Running Example

Client Browser
Web Server

form.php

GET form.php

URL Request

www.gracebook.com

Dawn Song

Running Example

Client Browser
Web Server

form.php

GET form.php

URL Request

<html><body>…

Request Response

www.gracebook.com

Dawn Song

Running Example

<html><body>
<div>
Update your status:

<form action="http://www.gracebook.com/share.php" method="post">
<input name="text" value="Feeling good!"></input>
<input type="submit" value="Share"></input>
</form>
</div>
</body></html>

Dawn Song

Running Example

Web Server
Client Browser

Update your status:

Feeling good! Share

Displays to user

www.gracebook.com

Dawn Song

Running Example

Web Server
Client Browser

share.php

Update your status:

Feeling good! Share

Displays to user

share.php
text=Feeling Good!

On “Share” click

www.gracebook.com

Dawn Song

Running Example

Web Server
Client Browser

share.php

Update your status:

Feeling good! Share

Displays to user

share.php
text=Feeling Good!

On “Share” click

Session Cookie

www.gracebook.com

Dawn Song

Running Example

Web Server
Client Browser

share.php
valid session

cookie?

Update your status:

Feeling good! Share

Displays to user

share.php
text=Feeling Good!

On “Share” click

Session Cookie

www.gracebook.com

Dawn Song

Running Example

Web Server
Client Browser

share.php
update user’s

status with the
text “Feeling

good!”

Update your status:

Feeling good! Share

Displays to user

share.php
text=Feeling Good!

On “Share” click

Session Cookie

DB
Server

status:
“Feeling
Good!”

www.gracebook.com

Dawn Song

Network Requests

The HTTP POST Request looks like this:

POST /share.php HTTP/1.1
Host: www.gracebook.com
User-Agent: Mozilla/5.0
Accept: */*
Content-Type: application/x-www-form-urlencoded;
charset=UTF-8
Referer:
 https://www.gracebook.com/form.php
Cookie: auth=beb18dcd75f2c225a9dcd71c73a8d77b5c304fb8

text=Feeling good!

Dawn Song

CSRF Attack

• The attacker, on attacker.com, creates a page containing the
following HTML:
<form action="http://www.gracebook.com/share.php" method="post" id="
f">

 <input type="hidden" name="text" value="SPAM COMMENT"></input>
 <script>document.getElementById('f').submit();</script>

• What will happen when the user visits the page?
a) The spam comment will be posted to user’s share feed on gracebook.com
b) The spam comment will be posted to user’s share feed if the user is currently

logged in on gracebook.com
c) The spam comment will not be posted to user’s share feed on gracebook.com

Dawn Song

CSRF Attack

• The attacker, on attacker.com, creates a page containing the
following HTML:
<form action="http://www.gracebook.com/share.php" method="post" id="
f">

 <input type="hidden" name="text" value="SPAM COMMENT"></input>
 <script>document.getElementById('f').submit();</script>

• What will happen when the user visits the page?
a) The spam comment will be posted to user’s share feed on gracebook.com
b) The spam comment will be posted to user’s share feed if the user is currently

logged in on gracebook.com
c) The spam comment will not be posted to user’s share feed on gracebook.com

Dawn Song

CSRF Attack

• JavaScript code can automatically submit the form in the
background to post spam to the user’s GraceBook feed.

• Similarly, a GET based CSRF is also possible. Making GET
requests is easier: just an img tag suffices.

Dawn Song

Example Attack

Web Server
Client Browser

share.php
update user’s

status with a spam
comment

share.php
text=SPAM COMMENT!

Via JavaScript
POST

Welcome to my harmless site!

Displays to user

Session Cookie

DB
Server

status:
“SPAM

COMMENT!”

<input type="hidden" …

Dawn Song

CSRF Defense

• Origin headers
– Introduction of a new header, similar to Referer.
– Unlike Referer, only shows scheme, host, and port

(no path data or query string)

• Nonce-based
– Use a nonce to ensure that only form.php can

get to share.php.

Dawn Song

CSRF via POST requests
Consider the Referer value from the POST request outlined earlier. In the
case of the CSRF attacks, will it be different?

a. Yes
b. No

Dawn Song

CSRF via POST requests
Consider the Referer value from the POST request outlined earlier. In the
case of the CSRF attacks, will it be different?

a. Yes
b. No

Dawn Song

Origin Header

• Instead of sending whole referring URL, which
might leak private information, only send the
referring scheme, host, and port.

POST /share.php HTTP/1.1
Host: www.gracebook.com
User-Agent: Mozilla/5.0
Accept: */*
Content-Type: application/x-www-form-urlencoded;
charset=UTF-8
Origin: http://www.gracebook.com/
Cookie: auth=beb18dcd75f2c225a9dcd71c73a8d77b5c304fb8

text=hi

Dawn Song

Origin Header

• Instead of sending whole referring URL, which
might leak private information, only send the
referring scheme, host, and port.

POST /share.php HTTP/1.1
Host: www.gracebook.com
User-Agent: Mozilla/5.0
Accept: */*
Content-Type: application/x-www-form-urlencoded;
charset=UTF-8
Origin: http://www.gracebook.com/
Cookie: auth=beb18dcd75f2c225a9dcd71c73a8d77b5c304fb8

text=hi

No path string
or query data

Dawn Song

Nonce based protection

• Recall the expected flow of the application:
– The message to be shared is first shown to the user on
form.php (the GET request)

– When user assents, a POST request to share.php
makes the actual post

• The server creates a nonce, includes it in a hidden
field in form.php and checks it in share.php.

Dawn Song

Nonce based protection

POST /share.php HTTP/1.1
Host: www.gracebook.com
User-Agent: Mozilla/5.0
Accept: */*
Content-Type: application/x-www-form-urlencoded;
charset=UTF-8
Origin: http://www.gracebook.com/
Cookie: auth=beb18dcd75f2c225a9dcd71c73a8d77b5c304fb8

Text=Feeling good!&csrfnonce=av834favcb623

<form action="share.php" method="post">
<input type="hidden" name="csrfnonce" value="av834favcb623">
<input type="textarea" name="text" value="Feeling good!">

The form with nonce

Server code compares nonce

Dawn Song

Legitimate Case

Client Browser
Web Server

form.php

GET form.php

URL Request

Dawn Song

Legitimate Case

Client Browser
Web Server

form.php

GET form.php

URL Request

<html><body><input type="hidden" name="
csrfnonce" value="av834favcb623">…

Request Response

Dawn Song

Legitimate Case

Web Server
Client Browser

Update your status:

Feeling good! Share

Displays to user

<input type="hidden" name="csrfnonce" …

Dawn Song

Legitimate Case

Web Server
Client Browser

share.php
update user’s

status with the
text “Feeling
good!” after
checking nonce

share.php
text=Feeling Good!

csrfnonce=av834favcb623

On “Share” click

Session Cookie

DB
Server

status:
“Feeling
Good!”

Update your status:

Feeling good! Share

Displays to user

<input type="hidden" name="csrfnonce" …

Dawn Song

Attack Case

Web Server
Client Browser

share.php
fails to update

because nonce value
is incorrect

share.php
text=SPAM COMMENT!

Via JavaScript
POST

Welcome to my harmless site!

Displays to user

Session Cookie

<input type="hidden“ …

Dawn Song

Recap

• CSRF: Cross Site Request Forgery
• An attack which forces an end user to execute

unwanted actions on a web application in which
he/she is currently authenticated.

• Caused because browser automatically includes
authorization credentials such as cookies.

• Fixed using Origin headers and nonces
– Origin headers not supported in older browsers.

Dawn Song

Web Session Management

Slides credit: Dan Boneh

Same origin policy: “high level”

Same Origin Policy (SOP) for DOM:

– Origin A can access origin B’s DOM if match on

(scheme, domain, port)

Same Original Policy (SOP) for cookies:

– Based on: ([scheme], domain, path)

optional

scheme://domain:port/path?params

scope

Setting/deleting cookies by server

Default scope is domain and path of setting URL

Brows
er Server

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly

if expires=NULL:
 this session only

if expires=past date:
 browser deletes cookie

Scope setting rules (write SOP)

domain: any domain-suffix of URL-hostname, except TLD

example:

 host = “login.site.com”

⇒ login.site.com can set cookies
 for all of .site.com but not for another site or TLD

 Problematic for sites like .berkeley.edu

path: can be set to anything

allowed domains
login.site.com

.site.com

disallowed domains
other.site.com
othersite.com

.com

Cookies are identified by (name,domain,path)

Both cookies stored in browser’s cookie jar;
both are in scope of login.site.com

cookie 1
name = userid
value = test
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = test123
domain = .site.com
path = /
secure

distinct cookies

Reading cookies on server (read SOP)

Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain, and

• cookie-path is prefix of URL-path, and

• [protocol=HTTPS if cookie is “secure”]

Goal: server only sees cookies in its scope

Browser
ServerGET //URL-domain/URL-path

Cookie: NAME = VALUE

Examples

http://checkout.site.com/

http://login.site.com/

https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

both set by login.site.com

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2
(arbitrary
order)

Client side read/write: document.cookie

Setting a cookie in Javascript:

 document.cookie = “name=value; expires=…; ”

Reading a cookie: alert(document.cookie)

prints string containing all cookies available for
document (based on [protocol], domain, path)

Deleting a cookie:

document.cookie = “name=; expires= Thu, 01-Jan-70”

document.cookie often used to customize page in Javascript

javascript: alert(document.cookie)

Javascript URL

Displays all cookies for current document

Viewing/deleting cookies in Browser UI

Cookie protocol problems
Server is blind:

– Does not see cookie attributes (e.g. secure, HttpOnly)

– Does not see which domain set the cookie

Server only sees: Cookie: NAME=VALUE

Example 1: login server problems

1. Alice logs in at login.site.com
 login.site.com sets session-id cookie for .site.com

2. Alice visits evil.site.com
 overwrites .site.com session-id cookie

 with session-id of user “badguy”
3. Alice visits course.site.com to submit homework.

 course.site.com thinks it is talking to “badguy”

Problem: course.site.com expects session-id from login.site.com;
 cannot tell that session-id cookie was overwritten

Example 2: “secure” cookies are not secure

Alice logs in at https://accounts.google.com

Alice visits http://www.google.com (cleartext)

• Network attacker can inject into response
Set-Cookie: SSID=badguy; secure

and overwrite secure cookie

Problem: network attacker can re-write cookies over HTTP

set-cookie: SSID=A7_ESAgDpKYk5TGnf; Domain=.google.com; Path=/ ;
Expires=Wed, 09-Mar-2022 18:35:11 GMT; Secure; HttpOnly

set-cookie: SAPISID=wj1gYKLFy-RmWybP/ANtKMtPIHNambvdI4; Domain=.google.com;Path=/ ;
Expires=Wed, 09-Mar-2022 18:35:11 GMT; Secure

Cookies have no integrity
User can change and delete cookie values

• Edit cookie database (cookies.sqlite)

• Modify Cookie header (TamperData extension)

Silly example: shopping cart software

 Set-cookie: shopping-cart-total = 150 ($)

User edits cookie file (cookie poisoning):

 Cookie: shopping-cart-total = 15 ($)

Similar problem with hidden fields

<INPUT TYPE=“hidden” NAME=price VALUE=“150”>
43

Sessions
A sequence of requests and responses from one browser
to one (or more) sites

– Session can be long (e.g. Gmail) or short

– without session mgmt:
 users would have to constantly re-authenticate

Session mgmt: authorize user once;

– All subsequent requests are tied to user

Session tokens
Browser

GET /index.html

set anonymous session token

GET /books.html
anonymous session token

POST /do-login
Username & password

elevate to a logged-in session token

POST /checkout
logged-in session token

check
credentials

(later)

Validate
token

web site

Storing session tokens:
Lots of options (but none are perfect)

Browser cookie:
Set-Cookie: SessionToken=fduhye63sfdb

Embed in all URL links:
https://site.com/checkout ? SessionToken=kh7y3b

In a hidden form field:
<input type=“hidden” name=“sessionid” value=“kh7y3b”>

Window.name DOM property

Storing session tokens: problems
Browser cookie: browser sends cookie with every request,

even when it should not (CSRF)

Embed in all URL links: token leaks via HTTP Referer header

In a hidden form field: does not work for long-lived sessions

Best answer: a combination of all of the above.

(or if user posts URL in a public blog)

The HTTP referer header

Referer leaks URL session token to 3rd parties

The Logout Process
Web sites must provide a logout function:

• Functionality: let user to login as different user

• Security: prevent others from abusing account

What happens during logout:

1. Delete SessionToken from client

2. Mark session token as expired on server

Problem: many web sites do (1) but not (2) !!

⇒ Especially risky for sites who fall back to HTTP after login

Session hijacking
Attacker waits for user to login

then attacker steals user’s Session Token
and “hijacks” session

⇒ attacker can issue arbitrary requests on behalf of user

Example: FireSheep.

Firefox extension that hijacks Facebook session tokens over
WiFi.

 Solution: use HTTPS

Session token theft
Example 1: login over HTTPS, but subsequent HTTP

• Enables cookie theft at wireless Café (e.g. Firesheep)

• Other reasons why session token sent in the clear:
– HTTPS/HTTP mixed content pages at site

Example 2: Cross Site Scripting (XSS) exploits
Amplified by poor logout procedures:

– Logout must invalidate token on server

Session Fixation

Assume the session ID is set by a URL parameter.

http://gracebook.com/index.html?sessionid=1337
 The attacker can trick the user into acting on behalf of the attacker.

Session fixation attacks
Suppose attacker can set the user’s session token:

• For URL tokens, trick user into clicking on URL

• For cookie tokens, set using XSS exploits

Attack: (say, using URL tokens)

1. Attacker gets anonymous session token for site.com

2. Sends URL to user with attacker’s session token

3. User clicks on URL and logs into site.com

– this elevates attacker’s token to logged-in token

4. Attacker uses elevated token to hijack user’s session.

Session fixation: lesson

When elevating user from anonymous to logged-in:

always issue a new session token

After login, token changes to value unknown to attacker.

⇒ Attacker’s token is not elevated.

