Computer Security Course. Dawn Song

Vulnerability Analysis (l11): Static Analysis

Slide credit: Vijay D’Silva Dawn Song

Efficiency of Symbolic Execution

A Static Analysis Analogy

Syntactic Analysis

Semantics-Based Analysis

Dawn Song

A Static Analysis Analogy

Syntactic Analysis

Semantics-Based Analysis

Dawn Song

Quiz: Branches and Paths

Suppose we want to know if there is a
feasible path to the location ERR in this
program.

Suppose we generate one path predicate
for each path through this program.

How many path predicates are generated?

Dawn Song

Quiz: Branches and Paths

Suppose we want to know if there is a
feasible path to the location ERR in this
program.

Suppose we generate one path predicate
for each path through this program.

How many path predicates are generated?

2n

Dawn Song

Quiz: Branches and Paths

Suppose we want to know if there is a
feasible path to the location ERR in this
program.

Suppose we generate one path predicate
for each path through this program.

How many path predicates are generated?
2n

Number of predicates can be exponential
in the number of branches.

Dawn Song

Quiz: Loops and Paths

This is the structure of a program with a
simple loop.

Suppose the error location is in block 3.

How many path predicates are generated?

Dawn Song

Quiz: Loops and Paths

This is the structure of a program with a
simple loop.

Suppose the error location is in block 3.

How many path predicates are generated?

2 " 1 3

® 0 0o
[I \S)
e 0o o

oo ol v
X =

Dawn Song

Quiz: Loops and Paths

—> 3

® 0 0o

[I \S)

o0 o

oo ol v

® 0 0

This is the structure of a program with a
simple loop.

Suppose the error location is in block 3.

How many path predicates are generated?

 Aloop can generate an infinite
number of path predicates

* Number of path predicates is finite
only if the program terminates

Dawn Song

false ij
x = —1;

Independence of Variables

if (x

0)

1;

~N

true

/

»
I
=

if (y%2 == 0)

fa
y:

y+1l;

Ny

t
H
o
()

Y = ¥Y~2;

\

assert (x != 0)

How many paths to the assertion?

Dawn Song

false ij
x = —1;

Independence of Variables

if (x

0)

1;

~N

true

/

»
I
=

if (y%2 == 0)

fa
y:

y+1l;

Ny

t
H
o
()

Y = ¥Y~2;

\

assert (x != 0)

How many paths to the assertion?
4

Dawn Song

false i
x = —1;

Independence of Variables

if (x

0)

1;

~

i1f (y%2 == 0)

fa
y:

y+1l;

Ny

\

assert (x != 0)

How many paths to the assertion?

4

The second branch does not affect the
assertion. How many paths without the

second branch?

Dawn Song

Independence of Variables

How many paths to the assertion?

false i Ne
x = —1; x =1; The second branch does not affect the
\ / assertion. How many paths without the
if (yv%2 == 0) ?
fay frue second branch-
2
. ix ; -

assert (x != 0)

Dawn Song

Independence of Variables

How many paths to the assertion?

if (x == 0) 4
fals f w;
X = -1; x = 1; The second branch does not affect the
\ / assertion. How many paths without the
if (y%2 == 0) second branch?
fay true 5
y = yt+i; y = y=2; .

Including all statements on a path

\ leads to larger constraints than
assert (X 1= 0) necessary

 Data dependencies can be used to
prune paths and simplify constraints

\

Dawn Song

Structure of Formulas

* The path predicate for this assertion

if (x > 0)

violation involves bit-vector multiplication

J' * Reasoning about multiplication of
if (x < 10) variables is computationally expensive
\l, (think of multiplier circuits)

y = x*x*x;
assert(y < 1000);

true falsel'

ERR

Dawn Song

Structure of Formulas

The path predicate for this assertion
if (x > 0)

violation involves bit-vector multiplication

J' * Reasoning about multiplication of

if (x < 10) variables is computationally expensive
\l, (think of multiplier circuits)

Y = X*X*X; * Only need to show an upper bound ony

assert(y < 1000);

* Imprecise reasoning can be more efficient

true false
‘1' and enough

ERR

Dawn Song

Challenges for Symbolic Execution

Path explosion due to branches and loops

Control Redundant exploration of same path prefixes
Search strategy determines if vulnerabilities are found
Algorithmic complexity of arithmetic and string reasoning
Data Constraint explosion because of irrelevant variables and

operations
Memory modeling is labor intensive but necessary

How can we address these issues?

Dawn Song

Efficiency of Symbolic Execution

Syntactic Analysis

Semantics-Based Analysis

Dawn Song

= = - - S
e e

Single Program Execution Moscone Center

SODA Hall

Dawn Song

Weather e
ChavezPark

(4)
Traffic
Roads

Terrain

s
’\\ 518

Emerywl(le-p,(/

E

Information Overload

D\
|

Bottlenecks for Dynamic Analysis

%
(H Ternes @ > &
Hépital Z
’é Marmottan]
® 55
> 3 % Hotel Le Royal
2 YA ZN0 S Monceau
€ R g L é)b Raffles Paris
g (¥9
% @ Argentine
®
2 ‘ o‘f};\ I'H ‘Jr‘
$ 6t
%‘ ‘3‘0 de
Avenue Focy
venue Foch Iy, 0
AV. Foch
qef\o George V @
S
o) p / Rue)
o S Z e,
Clinique & 2 ’% ’
Chirurgicale (3 Y m;
Victor H ~ [
Réservoir £ g0 & 2 < 2

Route Explosion

Dawn Song

Weather

Cesar

ChavezPark

Traffic
Roads

Terrain

Information Overload

“Data”

Bottlenecks for Dynamic Analysis

%
(H Ternes @ > &
Hépital Z
’é Marmottan]
® 55
> 3 % Hotel Le Royal
% YA z2 % & Monceau
€ R g L é)b Raffles Paris
K g D
% @ Argentine
®
2 o‘f};\ I'H ‘Jr‘
6t
%‘ ‘3‘0 de
Avenue Focyy
venue Foch Iy, 0
AV. Foch
qef\o George V @
S
(H) Kg/ g Hue
(< ,
Clinique -q‘;o A 2 e
Chirurgicale (3 Y m;
Victor H ~ [
Réservoir £ g0 & 2 < 2

Route Explosion

“Control”

Dawn Song

Static Analysis

Loss of information allows for more
efficient computation of some answers

Static analysis algorithms operate directly
on abstract representations

For example, we can analyze all possible
road-routes without even sitting in a car

Albany

Re
’Cesar North
Chavez Rark, o Berkeley
Berkeley BCltleK“y
Yacht Harbor Marina
South
Berkeley
(]
P\g\\h\] Ave
gotn St
Golden Gate
ine (24
Marina Park
) Temescal
Emeryville
Piedm
aaza Aven
@ Clawson

Dawn Song

Static Analysis

Albany M ¥ Re
Loss of information allows for more - i (’?'
efficient computation of some answers Chévez Rark x5 Berkdley
etter e

Static analysis algorithms operate directly Berkeliy
on abstract representations i ;
For example, we can analyze all possible LA
road-routes without even sitting in a car Eeville TP;

@ e dd aaza Aven

Dawn Song

Static Analysis

Loss of information allows for more
efficient computation of some answers

Static analysis algorithms operate directly
on abstract representations

For example, we can analyze all possible
road-routes without even sitting in a car

Albany m R
pesar NOTT g}
Chavez Park -+ Berkeley T
Berkeley Br\;r.k.clt“y]
Yacht Harbor anna 1
South
Berkeley
03) ¢
pehby Ave
Hb\‘_“. St
_ Golden Gate
iz (29
Marina Park
) Temescal
Emeryville
Piedm
Alaa Aven
@ Clawson

Dawn Song

Static Analysis

Loss of information allows for more
efficient computation of some answers

Static analysis algorithms operate directly
on abstract representations

For example, we can analyze all possible
road-routes without even sitting in a car

Berkeley
Yacht Harbor

Marina Park

A
César 10
Chavez Park
® R

" Temescal

Emeryville
. Piedm
Clawson 580 (Pt
80

Dawn Song

Static Analysis

Some questions can be answered efficiently.

“Can we drive, on land, from Melboure to
Hobart?”

Not enough information to answer questions
about traffic, terrain, the weather, routes
from Melbourne to Sydney etc.

ictoria

'© ~Melbourne
Werribee o

long© o
Frankston

Bass Strait

Devonport

, Launceston
Mount Heemskirk o

Regional Reserve
*. Tasmania

Hobart
(s}

Dawn Song

1 Efficiency of Symbolic Execution

2 A Static Analysis Analogy

4 Semantics-Based Analysis

Dawn Song

Static Analysis

A static analysis is one that does not execute the program.

interpret statements

' A syntactic analysis uses the code text but does not

*” o A semantic analysis interprets statements and updates facts
/\ o based on statements in the code

Dawn Song

Syntactic Example: Optional Arguments

* The system call open() has optional arguments
int open(const char ''* path'', int ''oflag'', ... /* mode t mode */);

* Typical mistake:
fd = open ("file" ’ O_CREAT);

e Result: file has random permissions

* To detect this problem: Look for oflag == O_CREAT without mode
argument

Dawn Song

Syntactic Example: Calling Conventions

I”

Goal: confine a process to a “jail” in the

. chroot (" /tmp/sandbox");
filesystem (°)

Use chroot() to change the filesystem fd = fopen("../etc/passwd’, "r");

root for a process

Problem: chroot() does not itself change

the current working directory chroot(...)

Result: fopen may refer to a file outside

the “jail” chdir("/") fopen(...)

open(...)
Detection: look for patterns matching

the specification

Dawn Song

Syntactic Example: Name Confusion

/*
* javax.security.auth.kerberos.KerberosTicket, 1.5b42
*/

if (flags != null) {
if (flags.length >= NUM_FLAGS)
this.flags = (boolean[]) flags.clone();
else {
this.flags = new boolean[NUM FLAGS];
// Fill in whatever we have
for (int i = 0; i < flags.length; i++)
this.flags[i] = flags[i];
}
} else
this.flags = new boolean[NUM FLAGS];

if ((flags[RENEWABLE_TICKET FLAG])| {
iT (renewrill == null)

source: Squashing Bugs with Static Analysis, William Pugh, 2006

» flags is a parameter,
this.flagsis afield

* Problem: check does not
prevent null dereference

* Result: Potential Null
Pointer Dereference

* Detection: find similar
names on code paths where
security-relevant conditions
are checked

Dawn Song

Quiz

Can you identify the problems in the following code? (all taken from well

tested, production software)

/* Eclipse 3.0.0.M8%*/
if (¢ == null && c.isDisposed())
return;

S *

Pu

Sun Java JDK 1.6*/
blic String foundType() {

return this.foundType();

source: Squashing Bugs with Static Analysis, William Pugh, 2006 Dawn Song

Syntactic Analysis

i Error rns: Heuristi
Specify Error Parse Program patterns: Heuristically observed

Patterns common error patterns in practice

\ / Parsing: generates data structure

used for error detection

Detect Patterns

Detection: match pattern against
program representation
Prune False Pruning: Used to eliminate common
Alarms false alarms

Dawn Song

Error Pattern Types

Error Type Examples
Typos =vs ==, &xVvs. X, missing/extra semi-colons
APl Usage chroot, multiple locking, etc.
Copy-Paste variable names/increments not updated

Identifier confusion

global and local variables, fields and parameters

Dawn Song

Pattern Representation and Detection

Representation Types of Algorithms
String Subseguence mining, edit distance, matching
Parse Tree Pattern matching,

Control Flow Graphs

Automata algorithms, sub-graph isomorphism

Dawn Song

1 Efficiency of Symbolic Execution

2 A Static Analysis Analogy

3 Syntactic Analysis

Dawn Song

Example Program

Entry)]
\1, How can we automatically check if
X = 0; the error location is reachable in this

program?

An analysis must reason about
 control flow

= — lo
= x\\' * branches
& o) aloop
1 Y —+—
Ifalse true1 false * data-
— Y 5 * increment, decrement
X1 true rl X <) i
() * comparisons with O

Err

Dawn Song

Abstracting Data

= Only track relevant properties of x

rif (y == 0)
false tru%

X =X - 1; X =x+ 1;

S _ T x<0 | [x=0 | [%0
if (y == 0)
Ifalse true1 false

Exit truerif (x < 0)

Err

Dawn Song

Abstracting Data

Exit

if (y == 0)
Ifalse true1 false

truerif (x < 0)

Err

Only track relevant properties of x

X can have any value

|

true

(w0 | (%0

T
-] =~

| x<=‘C')/J‘ x!l=0 |

>£>=O

>;>0

Dawn Song

Abstracting Data

Entry

rif (y == 0)
false tru%

if (y == 0)
Ifalse true1 false

Exit

truerif (x < 0)

Err

Only track relevant properties of x

X can have any value

|

true
Tl

[x<¥6/}‘ x!=0 , -\\;$=O

LXQQ"'J x==0 | [%0

5\;.:4‘—‘
false

no value is feasible

Dawn Song

rif (y == 0)
false tru%

Sign Analysis

Entry

X =X - 1; X =x+ 1;

N

if (y == 0)
Ifalse true1 false

Exit

truerif (x < 0)

Err

Analysis: update data about x based
on control flow

[x<%6ﬂi—— x}ép] .\‘\§;=O

(x<0 | x=0 | %0

Dawn Song

Entry

e

Sign Analysis

x = 0;

v

0)

if (y ==
‘false

truel

X =X - 1;

if (y ==
‘tfalse

\y

0)

Exit

false
true:L

truerif (x < 0)

Err

Analysis: update data about x based
on control flow

true

[x<%6ﬂi— x};p] M\§;=O

v

—J V1
v
v
n

x<0
(Hige)

Assuming arbitrary initialization,
anything can be true about x

§>O

Dawn Song

Entry

e

Sign Analysis

x = 0;

v

0)

if (y ==
‘false

truel

X =X - 1;

if (y ==
‘tfalse

\y

0)

Exit

false
true:L

truerif (x < 0)

Err

Analysis: update data about x based
on control flow

true

[x<%6ﬂi— x};p] M\§;=O

v

—J V1
v
v
n

x<0
(Hige)

The assignment updates the fact
about x

§>O

Dawn Song

Sign Analysis

Entry
e,
x = 0;
0)
if (y == 0)
false true
‘[
X =x - 1; x=x+ 1;

if (y ==
‘tfalse

Ny

0)

Exit

false
true:L

truerif (x < 0)

Err

Analysis: update data about x based
on control flow

true

[x<%6ﬂi— x};p] M\§;=O

v

—J V1
v
v
n

x<0 ‘";;g"
(Hige)

The condition does not affect x so
the fact “flows through”

§>O

Dawn Song

Sign Analysis

if (y
‘tfalse

Exit

false
true:L

truer

if (x < 0)

Err

Analysis: update data about x based

on control flow

true

| X<%6/]—

—J 1

x1=0

x;éo

x|

ke

v
—J V1
v
v
n
\

x;=0

§>O

Loss of precision! We cannot write
x==-1 so we approximate it by x<0

Dawn Song

Sign Analysis

LarE s Analysis: update data about x based
y
on control flow
x = 0;
X== ¢
true
if (y == 0)
‘false — tru% [x<=0’ X|=0] X>=0
X =x - 1; =x + 1;

(x<0 | x=0 | %0

x<0 \ Z<- S
if (y = false
Ifalse true1 false

Exit truerif (x < 0)

Err

Dawn Song

Sign Analysis

Entry
(e ——
x = 0;
0)
if (y == 0)
false true
l
X =x - 1; X =X+ 1;

<0 N\ o

Exit

if (y == 0)
Ifalse true1 false

truerif (x < 0)

Err

Analysis: update data about x based
on control flow

true

[x<%6ﬂi— x};p] M\§;=O

v

—J V1
v
v
n

x<0
(Hige)

At the join point x is either strictly
positive or strictly negative

§>O

Dawn Song

Sign Analysis

Pl

if (y ==
‘tfalse

0)]
false
true

Exit

truerif (x < 0)

Err

Analysis: update data about x based

on control flow

! -
Lt

- .

| x<§)\]

ke

At the join point x is either strictly
positive or strictly negative

Dawn Song

Sign Analysis

1=
x<0 ‘\\5\ =

Exit

if (y == 0)
Ifalse tru;:L false

truerif (x < 0)

Err

Analysis: update data about x based
on control flow

true

[x<%6ﬂi— x};p

—J 1

x;=0

v
—J V1
v
v
n
\

§>O

Cx<0 | [x=0
(Hige)

At the join point x is either strictly
positive or strictly negative

Dawn Song

Sign Analysis

LarE s Analysis: update data about x based
I
on control flow

x = 0;

¥ [t |
true
if (y == 0)
‘false — tru% [x<=0’ X|=0] X>=0

X =x - 1; X =X+ 1;

] (%0] [==0] [w0
x<0 \ Xi=0 Z<X>0 R

if (y == 0) false
x!1=0 Ifalse true1 false

Exit truerif (x < 0)

Err

Dawn Song

Sign Analysis

Entry Analysis: update data about x based
v
- on control flow
X = H

if (y == T ! ~~-_‘_~~‘
Else = [X<:=‘(\)\\’\ ’__,3(—!=9_J‘ /’—)—(—>=O
<0 | [%0 [
<0 \ x!1=0 [’]
if (y == 0) false
x!=0 I false
false ruq

Exit truerif (x < 0)

Err

Dawn Song

Sign Analysis

Entry
e ——
x = 0;
!
if (y == 0)
false true
l

X =X - 1;

I=
<0 .\\\Ei‘ x!=0

if (y
x!=0 ‘I;false

truer

Exit

false
rue:L

if (x < 0)

Err

x<0

Analysis: update data about x based
on control flow

v
—J V1
v
v
n
\

Cx<0 | x=0
(false |

The conditional restricts x

>;>0

Dawn Song

Sign Analysis

1=
x<0 ‘\\5\ =

if (y == 0)
x1=0 Ifalse S ru;:t false

truerif (x < 0)

Exit

Err

x<0

Analysis: update data about x based
on control flow

true

[x<%6ﬂi— x};p

—J 1

x;=0

v
—J V1
v
v
n
\

§>O

Cx<0 | [x=0
(Hige)

The analysis concludes that it may be
possible to reach Err with x<0

Dawn Song

Sign Analysis vs. Symbolic Execution

ey Compare the sign analysis to symbolic
0‘1' execution
X = 7
\1' Data was not precisely represented

if (y == 0) e Some variables were ignored
false true . .
* Control flow paths were joined
X =x — 1; X =x+ 1; * |tis notclearif thereis an error

x<0 \ X=0 Z< >0 * Itis not clear which path leads to

if (y == 0) the error
x!1=0 Ifalse rue1 false

Exit truerif (x < 0)

Err x<0

Dawn Song

Sign Analysis vs. Symbolic Execution

Entry

.

true

X = 0;

s

if (y == 0)
‘false tru%
X==

X =X+ 1;

X =X - 1;

x<0 /\ X!,:O

Pl

x!=0 }-true

if (y == 0)
x1=0 —_‘false 1 false

Exit truer

if (x < 0)

Err

\ x<0

Compare the sign analysis to symbolic
execution

 Data was not precisely represented

 Some variables were ignored

* Control flow paths were joined

* |tis not clear if there is an error

* |tis not clear which path leads to
the error

Problem: no information about y

Dawn Song

Zero Propagation

Entry Suppose we only track if y is zero or not

if (y == 0) false
Ifalse tru61 false

Exit | true rif (x < 0)

Err

Dawn Song

Zero Propagation

0)

if (y =
‘false

tru

= X -

=

.
4

x=x+1,

if (y
‘tfalse

\y

Exit

== 0)
false
tru-:L

if (x < 0)

truer

Err

Suppose we only track if y is zero or not

Dawn Song

Quiz: Zero Propagation

Entry

(e

x = 0;

if (y == 0)
| PR 1 false

Exit

if (x < 0)

truer

Err

Suppose we only track if y is zero or not

Can you fill in the blanks for the first
steps of the analysis?

=0 =0
false

Dawn Song

Zero Propagation

Entry

(e

|

if (y ==
y!=0 ‘false u%

x = 0;

0)

X =X - 1; X =x+ 1;

if (y == 0)
y!=0 Ifalse truq false

Exit

truerif (x < 0)

Err

Suppose we only track if y is zero or not

Can you fill in the blanks for the first
steps of the analysis?

= o)

Dawn Song

Zero Propagation

Entry

-——true &
w¢ Ny

if (y ==
y!=0 ‘false u%

0)

X =X - 1; X =x+ 1;

if (y == 0)
y!=0 ‘I:false Cy==0 | truq false

Exit

truerif (x < 0)

Err

Suppose we only track if y is zero or not

Can you fill in the blanks for the first
steps of the analysis?

= 0
false

A loop head is also a join-point

Dawn Song

Zero Propagation

Entry

-——true \1,
true — ‘L @ *

if (y ==
y!=0 ‘false u%

0)

X =X - 1; X =x+ 1;

if (y == 0)
y!=0 ‘I:false Cy==0 | truq false

Exit

truerif (x < 0)

Err

Suppose we only track if y is zero or not

Can you fill in the blanks for the first
steps of the analysis?

= 0
false

A loop head is also a join-point

Dawn Song

Zero Propagation

Entry

'IHEI'——————\L —
true —\Lm ’

if (y ==
y!=0 ‘false u%

0)

X =X - 1; X =x+ 1;

if (y == 0)
y!=0 Ifalse y==0 truq false

Exit

truerif (x < 0)

Err

Suppose we only track if y is zero or not

Can you fill in the blanks for the first
steps of the analysis?

= 0
false

Since the loop head was updated, what
follows may change.

Dawn Song

Zero Propagation

Entry

'EHEI'——————\L —
true —\Lm F

if (y ==
y!=0 ‘false u%

0)

X =X - 1; X =x+ 1;

if (y == 0)
y!=0 Ifalse y==0 true1 false

Exit

truerif (x < 0)

Err

Suppose we only track if y is zero or not

Can you fill in the blanks for the first
steps of the analysis?

=) i)

Since the loop head was updated, what
follows may change. In this case, the

update does not change the result of the
analysis. Dawn Song

Zero Propagation

Entry

'IHEI'——————\L —
true —\Lm ’

if (y ==
y!=0 ‘false u%

0)

X =X - 1; X =x+ 1;

if (y == 0)
y!=0 ‘I:false Cy==0 | truq false

Exit

truerif (x < 0)

Err

Suppose we only track if y is zero or not

Can you fill in the blanks for the first
steps of the analysis?

= 0
false

When propagation does not change the
results, a fixed point is reached.

Dawn Song

Sign Analysis vs. Zero Propagation

Entry

e

" true —l,@

if (y =
y!=0 ‘false

X =X - 1;

if (y == 0)
y!=0 ‘I:false Cy==0 | true1 false

Exit

if (x < 0)

truer

Err

Sign analysis and zero propagation both
report that the error may be reached.

Each analysis ignores one variable.

Can we do better by tracking both
variables at the same time?

Dawn Song

| x==0 | true]—§l,

=0 [y1=0 |

A Product Analysis

Entry
| true | true }—

X = 0;

if (y == 0)

1se true

X =Xx - 1;

| true | true }A\

| true][y==0 }— false

Exit

if (y == 0)

true

| false

truerif (x < 0)

Err (

x<0

[y==0]

Dawn Song

A Product Analysis

Entry

| true | true]—\‘1,

X =
| x==0 | true]——li

0;

if (y =

 x>=0 | y!=0 } |false

L x>=0 | true | [X<i=‘(‘)1:]><[:’3(’!=9::]>~—:::)’(‘>:=0

x>=0 | y==0 |

X =Xx - 1;

. true | true]A\

| true][y==0 }— false

Exit

' = (V0
P e —

if (y == 0)

truer

false
false
truen,
if (x < 0) Product analysis does not yield

Err

more information (in this case)

[

x<0 | _y==0 |

than running both separately
Dawn Song

A Product Analysis

——

| true | true]—\‘1,

0;

X =
| x==0 | true]——l,

if (y == 0)

[x>=0 | yl=0 ~ ‘false

true

[true | true]A\

| true][y==0 }— false

Exit

truer

X =x-1; X = H
N =0 [vi=0]
if (y == 0) >=0 | y==0] false
false
truen,
Problem: Correlation between x

if (x < 0)

and y is lost at this joint point.

Err

| x0 JLy==0] Analysis is path insensitive.

Dawn Song

Disjunctive Refinement

Entry

Disjunctive refinement
allows disjunctions of facts

L x>=0 | y=0 |
join
| x<0 | y==0]

instead of

| true | true |

Dawn Song

Analysis with Disjunctive Refinement

Entry
| true | true]—\‘1,

07

. x==0 | true]——ll

false x==0][y==0 |

. x==0 | y!=0]\rlf (Y

=x - 1; X =X+ 1;

x<0 | }\ ———1{ x>0 | y==0 |
. x<0 | y!=0 \ / y

false
fal it
$ alse true_\ll Initial steps are the same

Exit truerif (x < 0)

Err

Dawn Song

Analysis with Disjunctive Refinement

Entry
| true | true]—\‘1,
x = 0;

| x==0 | true]——li

[x==0 |_y!=0) r—if (y

Else X==0][V]
T = et Ll S | We~ o =
— N -

L x<0 [y'=0] —F1f (v == 0
or[x>0][y—-o] ¢false (y tr:e1 false

Exit truerif (x < 0)

Join is now disjunction

Err

Dawn Song

Analysis with Disjunctive Refinement

Entry
Ctue [Ttue ———
= 03

| x==0 | true }‘ll

(x==0 JC¥I=0 . —if (y ==
Else x==0][y]
TS i N e St B B Sl S O | W ==
X< Y \ // p—
or[0 |_y'=0 | ___f=¢ (y == 0) x>0 | y==0 |
L x<0][y!{Exit true [Tif (x < 0) More precise information

propagated after join
Err

Dawn Song

Analysis with Disjunctive Refinement

Entry

| true | true]—\‘1,

07

| x>=0 | true |

. x==0 | true]——ll

false

_x>=0 | y!=0]\rlf (y ==

//—[x>0 | y==0 |

O)W[X/wﬂ y==0 |
true

£ (x < 0) Result of final analysis.

[y=0 e Li X =x + 1;
true y \
or[true | y!=0 | A=
[-][y==0] ¢false
e yEny |LEXit | true ri
Err

Assertion is not violated.

Dawn Song

Analysis Frameworks

Types of Analyses

Precision

Summary of Program Analysis

Dawn Song

Analysis Frameworks

Lattices

Transformers

Systems of Equations

Solving Equations

Dawn Song

Analysis Frameworks

Lattices

Transformers

Systems of Equations

Solving Equations

Dawn Song

States, Transitions, Executions

int a[5];

for (int i=0;i<5;++1i)
a[i] = 0;

Dawn Song

States, Transitions, Executions

int a[5];

for (int i=0;i<5;++1i)

a[i] =

0;

States

values of local and global variables,
program counter, stack, heap

pcC

a[0]
a[1]
a[2]
a[3]
a[4]

undef

undef

undef

undef

Dawn Song

States, Transitions, Executions

int a[5];

for (int i=0;i<5;++1i)
a[i] = 0;

States

values of local and global variables,
program counter, stack, heap

Control Data

pc
[
a[0]
a[1]
a[2]
a[3]
a[4]

undef

undef

undef

undef

Dawn Song

States, Transitions, Executions

int a[5];

for (int i=0;i<5;++1i)

a[i] =

0;

States

Transitions

values of local and global variables,
program counter, stack, heap

state changes

pcC

a[0]
a[1]
a[2]
a[3]
a[4]

undef —>{ 0

undef undef
undef undef
undef undef

Dawn Song

States, Transitions, Executions

int a[5];

for (int i=0;i<5;++1i)

a[i] =

0;

States

Transitions

values of local and global variables,
program counter, stack, heap

state changes

pcC

a[0]
a[1]
a[2]
a[3]
a[4]

d b Control

1 0

0 ali]=0 0

Data
undef —>{ 0 /
undef undef
undef undef
undef undef
Dawn Song

States, Transitions, Executions

values of local and global variables,
int a[5]; Siglizs program counter, stack, heap
for (int 1=0;i<5;++1) Transitions state changes
al[i] 0;
Executions Sequence of state changes
pc a b o d b
i undef 0 0 1 0
a[0] undef =0 undef ali]=0 0 i 0 ali]=0 0
a[1] undef > undef | undef > undef > 0 |[====== >
al2] undef undef undef undef undef
a[3] undef undef undef undef undef
a[4] undef undef undef undef undef

Dawn Song

Control and Data in Programs

Variables

Statements

Control flow

have values, define state

modify values, define transitions on data

modify program counter, define control transitions

States

{

Executions

i

\

Transitions

Variables

!

Executions

7

[Statements }

.

|

Control
Flow

|

Dawn Song

Architecture of a Static Analyzer

The behavior of a program can be approximated by separately
approximating variable values, statements and control flow.

Variables Lattice

|

Executions |:> Statlc
Analyzer

Statements el Transformers System of
Flow Equatlons

Dawn Song

Lattices in Static Analysis

true
. T . top
_ - true
x<=0 x1=0 x>=0 i
e e | ED @ | i) @ -
x<0 X== x>0 i
T false bot
false
Signs Parity Constants
positive/negative/zero even or odd e asingle value

cannot represent non-
zero values

no relationships between
variables

cannot represent values
no relationships between
variables

cannot represent more
values: x==3| |x==

no relationships between
variables

Dawn Song

[[INT_MIN, INT_MAX]]

RO

The Interval Lattice

[[INT_MIN, 0]] [[0,INT_MAX]]

[[INT_M]N, 1]] [[1,IN'I:_MAX]]

|

geE [[101} [[011) |

R e===2=-"

120

al b
4 N
\ ,

An interval is a pair [a,b] witha<=b

[]
C | | d

< 1 b Q
~ d 0] P

There is a partial order between intervals

min(a,c)! ' max(b,d)
< al b c| | d S

The join is the smallest enclosing interval

max(a,c) "1 min(b,d)
P al o] b 1d -
N C

The meet is the largest shared interval

Dawn Song

Loss of Information in the Interval Lattice

[(INT_MIN, INT_MAX] Intervals are useful for tracking the range
e SR of variables. They lose information about
[INT_MIN, 0] [0,INT_MAX] concrete values.
(NT_MIN, -1] [LINT_MAX]
. 1,5}, 11,3,5}11,2,4,5} are
-t Arbitrary sets tL,3), 1 H }
[1,1] represented by [1,5]
24) (L0 | oa) | [L2] Union [1,3] join [6,7] = [1,7]
[1-1] ool | [y | includes values 4 and 5
TETEYT x=y can only be written as

Relations X:[INT_MIN,INT_MAX],
yV:[INT_MIN,INT_MAX]

Dawn Song

Lattice in a Static Analyzer

A lattice is a set with
* apartial order for comparing elements
|afiae * aleast upper bound called join
7 * agreatest lower bound called meet

Ai;?;'zcer In static analysis
e |attice elements abstract states

_ * orderis used to check if results change
[Pmpagauon] * meet and join are used at branch and join
points
Most analyses use only meet or only join

[Transformers]

Dawn Song

Analysis Frameworks

Lattices

Transformers

Systems of Equations

Solving Equations

Dawn Song

x>=0

Xx=x+1;

x>0

Sign Analysis Transformers

A transformer (or transfer function) describes
how a statement modifies lattice elements

(mY
Udwi

1 Song

Interval Analysis Transformers

Statement Transformer Loss of Precision
] s— -
X = X+3 = at3 1p+3 ~ | No loss of precision
P C | — -
h 2al 2b | [3,4] is transformed to [6,8] and
X=2*Xx | | . . L .
multiples of 2 in [2a,2b] includes 7, which is not a multiple of 2
o aj b
, N 4 .
if (x<=4) INT-MIN al I|min(b,4)* No loss of precision
al X b
if (x==y) . <y 1d _ | Cannot express that x and y must have
Y max(a,c) o min(b,d)* | the same value, not just bounds

* [a,b] means False when a>b.

Dawn SOt

18

